
Operating Systems 
03. Definitions, Concepts, & Architecture 

 

 

 

Paul Krzyzanowski 

Rutgers University 

Spring 2015 

1 February 2, 2015 © 2014-2015  Paul Krzyzanowski  



Definitions, Concepts, and Architecture 
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What is an operating system? 

• The first program 

• A program that lets you run other programs 

• A program that provides controlled access to resources: 

– CPU 

– Memory 

– Display, keyboard, mouse 

– Persistent storage 

– Network 

This includes: naming, sharing, protection, communication 
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What’s a kernel? 

• Operating System 

– Often refers to the complete system, including command 

interpreters, utility programs, window managers, … 

• Kernel 

– Core component of the system that manages resource access, 

memory, and process scheduling 
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Some of the things a kernel does 

• Controls execution of processes 

– Creation, termination, communication 

– Schedules processes for execution on the CPU(s) 

• Manages memory 

– Allocates memory for an executing process 

– Sets memory protection 

– Coordinates swapping pages of memory to a disk if low on memory 

• Manages a file system 

– Allocation and retrieval of disk data 

– Enforcing access permissions & mutual exclusion 

• Provides access to devices 

– Disk drives, networks, keyboards, displays, printers, … 

– Enforces access permissions & mutual exclusion 
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Execution: User Mode vs. Kernel Mode 

• Kernel mode = privileged, system, supervisor mode 

– Access restricted regions of memory 

– Modify the memory management unit 

– Set timers 

– Define interrupt vectors 

– Halt the processor 

– Etc. 

• CPU knows what mode it’s in via a status register 

– You can set the register in kernel mode 

– OS & boot loaders run in kernel mode 

– User programs run in user mode 
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How do you get to kernel mode?  

• Trap: Transfer of control  

– Like a subroutine call (return address placed on stack) 

– Mode switch: user mode →  kernel mode 

• Interrupt Vector Table 

– Configured by kernel at boot time 

– Depending on architecture 

• Code entry points 

– Control jumps to an entry in the table based on trap number 

– Table will contain a set of JMP instructions to different handlers in the kernel 

• List of addresses 

– Each entry contains a structure that defines the target address & privilege level 

– Table will contain a set of addresses for different handlers in the kernel 

• Returning back to user mode 

– Return from exception 
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How do you get to kernel mode? 

Three types of traps: 

1. Software interrupt – explicit instruction 

 Intel architecture: INT instruction (interrupt) 

 ARM architecture: SWI instruction (software interrupt) 

2. Violation 

3. Hardware interrupt 

 

Traps give us a mechanism to transfer to well-defined entry 

points in the kernel 
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System Calls: Interacting with the OS 

• A system call is a way for a user program to request services from 

the operating system 

– The operating system remains in control of devices 

– Enforces policies 

 

• Use trap mechanism to switch to the kernel 

– User ↔  ︎Kernel mode switch: Mode switch 

– Note: most architectures support an optimized trap for system calls 

• Intel: SYSENTER/SYSEXIT 

• AMD: SYSCALL/SYSRET 
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System Calls: Interacting with the OS 

• Use trap mechanism to switch to the kernel 

• Pass a number that represents the OS service (e.g., read) 

– System call number; usually set in a register 

• A system call does the following: 

– Set the system call number 

– Save parameters 

– Issue the trap (jump to kernel mode) 

• OS gets control 

• Saves registers, does the requested work 

• Return from exception (back to user mode) 

– Retrieve results and return them to the calling function 

• System call interfaces are encapsulated as library functions 
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Regaining control: Timer interrupts 

• How do we ensure that the OS can get control? 

– If your process is running, the operating system is not running 

• Program a timer interrupt 

 

• Crucial for: 

– Preempting a running process to give someone else a chance 

(force a context switch) 

• Including ability to kill the process 

– Giving the OS a chance to poll hardware  

– OS bookkeeping 

 

February 2, 2015 © 2014-2015  Paul Krzyzanowski  12 



Timer interrupts 

• Windows 

– Typically 64 or 100 interrupts per second 

– Apps can raise this to 1024 interrupts per second 

• Linux 

– Interrupts from Programmable Interval Timer (PIT) or HPET (High 

Precision Event Timer) and from a local APIC timer (one per CPU)  

– Interrupt frequency varies per kernel and configuration 

• Linux 2.4: 100 Hz 

• Linux 2.6.0 – 2.6.13: 1000 Hz 

• Linux 2.6.14+ : 250 Hz 

• Linux 2.6.18 and beyond: aperiodic – tickless kernel 

– PIT not used for periodic interrupts; just APIC timer interrupts 
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Context switch & Mode switch 

• An interrupt or trap results in a mode switch: user → kernel mode 

• An operating system may choose to save a process’ state and 

restore another process’ state → preemption 

– Context switch 

– Save all registers 

(including stack pointers, PC, and flags) 

– Load saved registers (including SP, PC, flags)  

– To return to original context:  restore registers and return from exception 

• Context switch:  

– Switch to kernel mode 

– Save state so that it can be restored later 

– Load another process’ saved state 

– Return (to the restored process) 
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Devices 

• Character: mice, keyboard, audio, scanner 

– Byte streams 

• Block: disk drives, flash memory 

– Addressable blocks (suitable for caching) 

• Network: Ethernet & wireless networks 

– Packet based I/O 

• Bus controllers 

– Interface with communication busses 
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Interacting with devices 

• Devices have command registers 

– Transmit, receive, data ready, read, write, seek, status 

• Memory mapped I/O 

– Map device registers into memory 

– Memory protection now protects device access 

– Standard memory load/store instructions can be used to interact 

with the device 
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Getting data to/from devices 

• When is the device ready? 

– Polling 

• Wait for device to be ready 

• To avoid busy loop, check each clock interrupt 

– Interrupts from the device 

• Interrupt when device has data or when the device is done transmitting 

• No checking needed – but context switch may be costly 

February 2, 2015 © 2014-2015  Paul Krzyzanowski  17 



Getting data to/from devices 

• How do you move data? 

– Programmed I/O (PIO) 

• Use memory-mapped device registers 

• The processor is responsible for transferring data to/from the device by 

writing/reading these registers 

– DMA 

• Allow the device to access system memory directly 
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Files and file systems 

• Persistent storage of data 

– Handle allocation of disk space 

• Provide user-friendly names to identify the data 

• Associate attributes with the data 

– Create time, access time, owner, permissions, … 

– Device or data file? 

 

February 2, 2015 © 2014-2015  Paul Krzyzanowski  19 



Structure of an operating system 
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UNIX? NT? POSIX? 
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POSIX 

• UNIX → POSIX (IEEE interface specification) 

• IEEE (ISO/IEC 9945): defines POSIX environment 

– System interfaces 

– Shell & scripting interface 

– Common utilities 

– Networking interfaces 

– Security interfaces 

• POSIX (or close to) systems include 

– Solaris, BSD, Mac OS X, VxWorks,  

Microsoft Windows Services for UNIX 

– Linux, FreeBSD, NetBSD, OpenBSD, BeOS 
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Mechanisms & Policies 

February 2, 2015 © 2014-2015  Paul Krzyzanowski  23 



OS Mechanisms & Policies 

• Mechanisms: 

– Presentation of a software abstraction: 

• Memory, data blocks, network access, processes 

• Policies: 

– Procedures that define the behavior of the mechanism 

• Allocation of memory regions, replacement policy of data blocks 

• Permissions 

– Enforcement of access rights 

• Keep mechanisms, policies, and permissions separate 
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Processes 

• Mechanism: 

– Create, terminate, suspend, switch, communicate 

 

• Policy 

– Who is allowed to create and destroy processes? 

– What is the limit? 

– What processes can communicate? 

– Who gets priority? 

 

• Permissions 

– Is the process making the request allowed to perform the operation? 
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Threads 

• Mechanism: 

– Create, terminate, suspend, switch, synchronize 

 

• Policy 

– Who is allowed to create and destroy threads? 

– What is the limit? 

– How do you assign threads to processors? 

– How do you schedule the CPU among threads of the same 

process? 
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Virtual Memory 

• Mechanism: 

– Logical to physical address mapping 

 

• Policy 

– How do you allocate physical memory among processes and 

among users? 

– How do you share physical memory among processes? 

– Whose memory do you purge when you’re running low? 
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File Systems 

• Mechanism: 

– Create, delete, read, write, share files 

– Manage a cache; memory map files 

 

• Policy 

– What protection mechanisms do you enforce? 

– What disk blocks do you allocate? 

– How do you manage cached blocks of data (Per file? Per user? Per 

process?) 

 

February 2, 2015 © 2014-2015  Paul Krzyzanowski  28 



Messages 

• Mechanism: 

– Send, receive, retransmit, buffer bytes 

 

• Policy 

– Congestion control, dropping packets, routing, prioritization, 

multiplexing 
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Character Devices 

• Mechanism: 

– Read, write, change device options 

 

• Policy 

– Who is allowed to access the device?  

– Is sharing permitted? 

– How do you schedule device access? 
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The End 
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