
Operating Systems
03. Definitions, Concepts, & Architecture

Paul Krzyzanowski

Rutgers University

Spring 2015

1 February 2, 2015 © 2014-2015 Paul Krzyzanowski

Definitions, Concepts, and Architecture

February 2, 2015 © 2014-2015 Paul Krzyzanowski 2

What is an operating system?

• The first program

• A program that lets you run other programs

• A program that provides controlled access to resources:

– CPU

– Memory

– Display, keyboard, mouse

– Persistent storage

– Network

This includes: naming, sharing, protection, communication

February 2, 2015 © 2014-2015 Paul Krzyzanowski 3

OS Structure

OS

Devices

Process

Process

Process

Monolithic

Devices

Process

Process

Process

Modular

FS1 FS 2 FS 3

Audio

USB

Scheduler

SCSI

Microkernel

Devices

microkernel

scheduler

FS1

FS2

FS3

SCSI USB Audio

OS

emulation

Process

Process

Process

February 2, 2015 © 2014-2015 Paul Krzyzanowski 4

What’s a kernel?

• Operating System

– Often refers to the complete system, including command

interpreters, utility programs, window managers, …

• Kernel

– Core component of the system that manages resource access,

memory, and process scheduling

February 2, 2015 © 2014-2015 Paul Krzyzanowski 5

Some of the things a kernel does

• Controls execution of processes

– Creation, termination, communication

– Schedules processes for execution on the CPU(s)

• Manages memory

– Allocates memory for an executing process

– Sets memory protection

– Coordinates swapping pages of memory to a disk if low on memory

• Manages a file system

– Allocation and retrieval of disk data

– Enforcing access permissions & mutual exclusion

• Provides access to devices

– Disk drives, networks, keyboards, displays, printers, …

– Enforces access permissions & mutual exclusion

February 2, 2015 © 2014-2015 Paul Krzyzanowski 6

Execution: User Mode vs. Kernel Mode

• Kernel mode = privileged, system, supervisor mode

– Access restricted regions of memory

– Modify the memory management unit

– Set timers

– Define interrupt vectors

– Halt the processor

– Etc.

• CPU knows what mode it’s in via a status register

– You can set the register in kernel mode

– OS & boot loaders run in kernel mode

– User programs run in user mode

February 2, 2015 © 2014-2015 Paul Krzyzanowski 7

How do you get to kernel mode?

• Trap: Transfer of control

– Like a subroutine call (return address placed on stack)

– Mode switch: user mode → kernel mode

• Interrupt Vector Table

– Configured by kernel at boot time

– Depending on architecture

• Code entry points

– Control jumps to an entry in the table based on trap number

– Table will contain a set of JMP instructions to different handlers in the kernel

• List of addresses

– Each entry contains a structure that defines the target address & privilege level

– Table will contain a set of addresses for different handlers in the kernel

• Returning back to user mode

– Return from exception

February 2, 2015 © 2014-2015 Paul Krzyzanowski 8

How do you get to kernel mode?

Three types of traps:

1. Software interrupt – explicit instruction

 Intel architecture: INT instruction (interrupt)

 ARM architecture: SWI instruction (software interrupt)

2. Violation

3. Hardware interrupt

Traps give us a mechanism to transfer to well-defined entry

points in the kernel

February 2, 2015 © 2014-2015 Paul Krzyzanowski 9

System Calls: Interacting with the OS

• A system call is a way for a user program to request services from

the operating system

– The operating system remains in control of devices

– Enforces policies

• Use trap mechanism to switch to the kernel

– User ↔ ︎Kernel mode switch: Mode switch

– Note: most architectures support an optimized trap for system calls

• Intel: SYSENTER/SYSEXIT

• AMD: SYSCALL/SYSRET

February 2, 2015 © 2014-2015 Paul Krzyzanowski 10

System Calls: Interacting with the OS

• Use trap mechanism to switch to the kernel

• Pass a number that represents the OS service (e.g., read)

– System call number; usually set in a register

• A system call does the following:

– Set the system call number

– Save parameters

– Issue the trap (jump to kernel mode)

• OS gets control

• Saves registers, does the requested work

• Return from exception (back to user mode)

– Retrieve results and return them to the calling function

• System call interfaces are encapsulated as library functions

February 2, 2015 © 2014-2015 Paul Krzyzanowski 11

Regaining control: Timer interrupts

• How do we ensure that the OS can get control?

– If your process is running, the operating system is not running

• Program a timer interrupt

• Crucial for:

– Preempting a running process to give someone else a chance

(force a context switch)

• Including ability to kill the process

– Giving the OS a chance to poll hardware

– OS bookkeeping

February 2, 2015 © 2014-2015 Paul Krzyzanowski 12

Timer interrupts

• Windows

– Typically 64 or 100 interrupts per second

– Apps can raise this to 1024 interrupts per second

• Linux

– Interrupts from Programmable Interval Timer (PIT) or HPET (High

Precision Event Timer) and from a local APIC timer (one per CPU)

– Interrupt frequency varies per kernel and configuration

• Linux 2.4: 100 Hz

• Linux 2.6.0 – 2.6.13: 1000 Hz

• Linux 2.6.14+ : 250 Hz

• Linux 2.6.18 and beyond: aperiodic – tickless kernel

– PIT not used for periodic interrupts; just APIC timer interrupts

February 2, 2015 © 2014-2015 Paul Krzyzanowski 13

Context switch & Mode switch

• An interrupt or trap results in a mode switch: user → kernel mode

• An operating system may choose to save a process’ state and

restore another process’ state → preemption

– Context switch

– Save all registers

(including stack pointers, PC, and flags)

– Load saved registers (including SP, PC, flags)

– To return to original context: restore registers and return from exception

• Context switch:

– Switch to kernel mode

– Save state so that it can be restored later

– Load another process’ saved state

– Return (to the restored process)

February 2, 2015 © 2014-2015 Paul Krzyzanowski 14

Devices

• Character: mice, keyboard, audio, scanner

– Byte streams

• Block: disk drives, flash memory

– Addressable blocks (suitable for caching)

• Network: Ethernet & wireless networks

– Packet based I/O

• Bus controllers

– Interface with communication busses

February 2, 2015 © 2014-2015 Paul Krzyzanowski 15

Interacting with devices

• Devices have command registers

– Transmit, receive, data ready, read, write, seek, status

• Memory mapped I/O

– Map device registers into memory

– Memory protection now protects device access

– Standard memory load/store instructions can be used to interact

with the device

February 2, 2015 © 2014-2015 Paul Krzyzanowski 16

Getting data to/from devices

• When is the device ready?

– Polling

• Wait for device to be ready

• To avoid busy loop, check each clock interrupt

– Interrupts from the device

• Interrupt when device has data or when the device is done transmitting

• No checking needed – but context switch may be costly

February 2, 2015 © 2014-2015 Paul Krzyzanowski 17

Getting data to/from devices

• How do you move data?

– Programmed I/O (PIO)

• Use memory-mapped device registers

• The processor is responsible for transferring data to/from the device by

writing/reading these registers

– DMA

• Allow the device to access system memory directly

February 2, 2015 © 2014-2015 Paul Krzyzanowski 18

Files and file systems

• Persistent storage of data

– Handle allocation of disk space

• Provide user-friendly names to identify the data

• Associate attributes with the data

– Create time, access time, owner, permissions, …

– Device or data file?

February 2, 2015 © 2014-2015 Paul Krzyzanowski 19

Structure of an operating system

User programs

Libraries

System call interface

File management

File systems

Buffer cache

Hardware control

Network Block

Device drivers

Character

Hardware

Scheduler
Memory

Management

Inter-process

Communication
Process

Control

Network

User level

Kernel level

Hardware level

© 2014-2015 Paul Krzyzanowski 20 February 2, 2015

UNIX? NT? POSIX?

February 2, 2015 © 2014-2015 Paul Krzyzanowski 21

UNIX

BSD

NextStep Mac OS X

Free BSD

OpenBSD

NetBSD

SunOS Oracle Solaris

UNIX

System V

Linux

POSIX

Mach Kernel

VMS

CP/M MS-DOS Windows

Android

iOS

QDO

S

IBM OS/2

Windows

NT

Windows

20xx

Windows

XP

Windows

8

OneCore

POSIX

• UNIX → POSIX (IEEE interface specification)

• IEEE (ISO/IEC 9945): defines POSIX environment

– System interfaces

– Shell & scripting interface

– Common utilities

– Networking interfaces

– Security interfaces

• POSIX (or close to) systems include

– Solaris, BSD, Mac OS X, VxWorks,

Microsoft Windows Services for UNIX

– Linux, FreeBSD, NetBSD, OpenBSD, BeOS

February 2, 2015 © 2014-2015 Paul Krzyzanowski 22

Mechanisms & Policies

February 2, 2015 © 2014-2015 Paul Krzyzanowski 23

OS Mechanisms & Policies

• Mechanisms:

– Presentation of a software abstraction:

• Memory, data blocks, network access, processes

• Policies:

– Procedures that define the behavior of the mechanism

• Allocation of memory regions, replacement policy of data blocks

• Permissions

– Enforcement of access rights

• Keep mechanisms, policies, and permissions separate

February 2, 2015 © 2014-2015 Paul Krzyzanowski 24

Processes

• Mechanism:

– Create, terminate, suspend, switch, communicate

• Policy

– Who is allowed to create and destroy processes?

– What is the limit?

– What processes can communicate?

– Who gets priority?

• Permissions

– Is the process making the request allowed to perform the operation?

February 2, 2015 © 2014-2015 Paul Krzyzanowski 25

Threads

• Mechanism:

– Create, terminate, suspend, switch, synchronize

• Policy

– Who is allowed to create and destroy threads?

– What is the limit?

– How do you assign threads to processors?

– How do you schedule the CPU among threads of the same

process?

February 2, 2015 © 2014-2015 Paul Krzyzanowski 26

Virtual Memory

• Mechanism:

– Logical to physical address mapping

• Policy

– How do you allocate physical memory among processes and

among users?

– How do you share physical memory among processes?

– Whose memory do you purge when you’re running low?

February 2, 2015 © 2014-2015 Paul Krzyzanowski 27

File Systems

• Mechanism:

– Create, delete, read, write, share files

– Manage a cache; memory map files

• Policy

– What protection mechanisms do you enforce?

– What disk blocks do you allocate?

– How do you manage cached blocks of data (Per file? Per user? Per

process?)

February 2, 2015 © 2014-2015 Paul Krzyzanowski 28

Messages

• Mechanism:

– Send, receive, retransmit, buffer bytes

• Policy

– Congestion control, dropping packets, routing, prioritization,

multiplexing

February 2, 2015 © 2014-2015 Paul Krzyzanowski 29

Character Devices

• Mechanism:

– Read, write, change device options

• Policy

– Who is allowed to access the device?

– Is sharing permitted?

– How do you schedule device access?

February 2, 2015 © 2014-2015 Paul Krzyzanowski 30

The End

February 2, 2015 31 © 2014-2015 Paul Krzyzanowski

