CS 416: Operating Systems Design

February 2, 2015

Operating Systems

03. Definitions, Concepts, & Architecture

Paul Krzyzanowsk
Rutgers University

Spring 2015

Definitions, Concepts, and Architecture

Febnary 2, 2015 ©20142015 Paul Kezyzanouski

February 2, 2015 ©20142015 Paul Krzyzanouski

What is an operating system?

QS Structure

* The first program
» A program that lets you run other programs

» Aprogram that provides controlled access to resources:

- CPU
— Memory
— Display, keyboard, mouse
— Persistent storage
— Network
This includes: naming, sharing, protection, communication

Devices Devices

Monolithic Modular Microkernel

Febnary 2, 2015 ©20142015 Paul Krzyzanowski

Febnary 2, 2015 ©2012015 Paul Krzyzavowski

What's a kernel?

Some of the things a kernel does

» Operating System
— Often refers to the complete system, including command
interpreters, utility programs, window managers, ...
* Kernel

— Core component of the system that manages resource access,
memory, and process scheduling

« Controls execution of processes
— Creation, termination, communication
— Schedules processes for execution on the CPU(s)

+ Manages memory

— Allocates memory for an executing process

— Sets memory protection

— Coordinates swapping pages of memory to a disk if low on memory
« Manages a file system

— Allocation and retrieval of disk data

— Enforcing access permissions & mutual exclusion
« Provides access to devices

— Disk drives, networks, keyboards, displays, printers, ...
— Enforces access permissions & mutual exclusion

February 2, 2015 ©20142015 Paul Kezyzanousi

Paul Krzyzanowski

February 2, 2015 ©20142015 Paul Kizyzanowski

CS 416: Operating Systems Design

February 2, 2015

Execution: User Mode vs. Kernel Mode

How do you get to kernel mode?

» Kernel mode = privileged, system, supervisor mode
— Access restricted regions of memory
— Modify the memory management unit
— Set timers
— Define interrupt vectors
— Halt the processor
- Etc.

» CPU knows what mode it's in via a status register
— You can set the register in kernel mode
— OS & boot loaders run in kernel mode
— User programs run in user mode

« Trap: Transfer of control
— Like a subroutine call (return address placed on stack)
— Mode switch: user mode — kernel mode

« Interrupt Vector Table
— Configured by kernel at boot time
— Depending on architecture
« Code entry points
~ Control jumps to an entry in the table based on trap number
— Table will contain a set of JMP instructions to different handlers in the kernel
« List of addresses
— Each entry contains a structure that defines the target address & privilege level
— Table will contain a set of addresses for different handlers in the kemel

« Returning back to user mode
— Return from exception

Febnary 2, 2015 ©20142015 Paul Kezyzanouski 7

Febnary 2, 2015 ©20142015 Paul Krzyzanouski 8

How do you get to kernel mode?

System Calls: Interacting with the QS

Three types of traps:

1. Software interrupt — explicit instruction
o Intel architecture: INT instruction (interrupt)
= ARM architecture: SWI instruction (software interrupt)

2. Violation

3. Hardware interrupt

Traps give us a mechanism to transfer to well-defined entry
points in the kernel

« Asystem call is a way for a user program to request services from
the operating system
— The operating system remains in control of devices
— Enforces policies

« Use trap mechanism to switch to the kernel
— User —[Kernel mode switch: Mode switch
— Note: most architectures support an optimized trap for system calls
« Intel: SYSENTER/SYSEXIT
+ AMD: SYSCALL/SYSRET

Febrary 2, 2015 20142015 Paul Kezyzanowsks B

February 2, 2015 ©20142015 Pau Krzyzanowski 10

System Calls: Interacting with the QS

Regaining control: Timer interrupts

« Use trap mechanism to switch to the kernel

« Pass a number that represents the OS service (e.g., read)
— System call number; usually set in a register

« Asystem call does the following:
— Set the system call number
— Save parameters
— Issue the trap (jump to kernel mode)
« OS gets control
+ Saves registers, does the requested work
+ Return from exception (back to user mode)
— Retrieve results and return them to the calling function

« System call interfaces are encapsulated as library functions

* How do we ensure that the OS can get control?
— If your process is running, the operating system is not running

» Program a timer interrupt

* Crucial for:
— Preempting a running process to give someone else a chance
(force a context switch)
« Including ability to kill the process
— Giving the OS a chance to poll hardware
— OS bookkeeping

February 2, 2015 ©20142015 Paul Kizyzanousks 1

Paul Krzyzanowski

February 2, 2015 ©20142015 Pau Krzyzanouski 2

CS 416: Operating Systems Design

February 2, 2015

Timer interrupts

Context switch & Mode switch

* Windows
— Typically 64 or 100 interrupts per second
— Apps can raise this to 1024 interrupts per second

* Linux
— Interrupts from Programmable Interval Timer (PIT) or HPET (High
Precision Event Timer) and from a local APIC timer (one per CPU)
— Interrupt frequency varies per kernel and configuration
« Linux 2.4: 100 Hz
«+ Linux 2.6.0 — 2.6.13: 1000 Hz
+ Linux 2.6.14+ : 250 Hz
«+ Linux 2.6.18 and beyond: aperiodic — tickless kernel
— PIT not used for periodic interrupts; just APIC timer interrupts

An interrupt or trap results in a mode switch:

An operating system may choose to save a process’ state and
restore another process’ state — preemption
— Context switch

— Save all registers
(including stack pointers, PC, and flags)

— Load saved registers (including SP, PC, flags)
— To return to original context: restore registers and return from exception

Context switch:

— Switch to kernel mode

— Save state so that it can be restored later
— Load another process’ saved state

— Return (to the restored process)

Febnary 2, 2015 ©20142015 Paul Kezyzanouski

Febnary 2, 2015 ©20142015 Paul Krzyzanouski 1

Devices

Interacting with devices

* Character: mice, keyboard, audio, scanner
— Byte streams

« Block: disk drives, flash memory
— Addressable blocks (suitable for caching)

* Network: Ethernet & wireless networks
— Packet based I/0

* Bus controllers
— Interface with communication busses

» Devices have command registers
— Transmit, receive, data ready, read, write, seek, status

* Memory mapped I/O
— Map device registers into memory
— Memory protection now protects device access

— Standard memory load/store instructions can be used to interact
with the device

Febrary 2, 2015 20142015 Paul Kezyzanowsks

February 2, 2015 ©20142015 Pau Krzyzanowski 16

Getting data to/from devices

Getting data to/from devices

* When is the device ready?
— Polling
« Wait for device to be ready
« To avoid busy loop, check each clock interrupt
— Interrupts from the device
« Interrupt when device has data or when the device is done transmitting
+ No checking needed — but context switch may be costly

* How do you move data?
— Programmed 1/O (PIO)
« Use memory-mapped device registers
« The processor is responsible for transferring data to/from the device by
writing/reading these registers

— DMA
« Allow the device to access system memory directly

February 2, 2015 ©20142015 Paul Kizyzanousks

Paul Krzyzanowski

February 2, 2015 ©20142015 Pau Krzyzanouski 18

CS 416: Operating Systems Design February 2, 2015

Vs . I N
Files and file systems Structure of an operating system
* Persistent storage of data
— Handle allocation of disk space
* Provide user-friendly names to identify the data User level
+ Associate attributes with the data Kernel level

— Create time, access time, owner, permissions, ...
— Device or data file?

A S |
\ / \ v,

Febnary 2, 2015 ©20142015 Paul Krzyzanowsks 19 Febnary 2, 2015 ©20142015 Pau Krzyzavowski 20

[UNIX? NT? POSIX? POSIX

(posx_}. * UNIX — POSIX (IEEE interface specification)

* |[EEE (ISO/IEC 9945): defines POSIX environment
— System interfaces
— Shell & scripting interface
— Common utilities
— Networking interfaces
— Security interfaces

« POSIX (or close to) systems include

— Solaris, BSD, Mac OS X, VxWorks,
Microsoft Windows Services for UNIX

— Linux, FreeBSD, NetBSD, OpenBSD, BeOS

\

Febrary 2, 2015 ©20142015 Paul Krzyzanowski 21 February 2, 2015 ©20142015 Paul Krzyzavowski 2

OS Mechanisms & Policies

* Mechanisms:
— Presentation of a software abstraction:
« Memory, data blocks, network access, processes

Mechanisms & Policies bolicies:
« Policies:

— Procedures that define the behavior of the mechanism
« Allocation of memory regions, replacement policy of data blocks

« Permissions
— Enforcement of access rights

« Keep mechanisms, policies, and permissions separate

Febnary 2, 2015 ©20142015 Paul Kezyzanousi 2 Febnary 2, 2015 ©20142015 Pau Krzyzarouski 2

Paul Krzyzanowski 4

CS 416: Operating Systems Design February 2, 2015

Processes Threads
* Mechanism: * Mechanism:
— Create, terminate, suspend, switch, communicate — Create, terminate, suspend, switch, synchronize
* Policy * Policy
— Who is allowed to create and destroy processes? — Who is allowed to create and destroy threads?
— What s the limit? — What s the limit?
— What processes can communicate? — How do you assign threads to processors?
— Who gets priority? — How do you schedule the CPU among threads of the same
process?
* Permissions
— Is the process making the request allowed to perform the operation?
. / .
Virtual Memaory File Systems
* Mechanism: * Mechanism:
— Logical to physical address mapping — Create, delete, read, write, share files
— Manage a cache; memory map files
* Policy
— How do you allocate physical memory among processes and * Policy
among users? — What protection mechanisms do you enforce?
— How do you share physical memory among processes? — What disk blocks do you allocate?
— Whose memory do you purge when you're running low? — How do you manage cached blocks of data (Per file? Per user? Per
process?)
. / .
Messages Character Devices
* Mechanism: » Mechanism:
— Send, receive, retransmit, buffer bytes — Read, write, change device options
« Policy * Policy
— Congestion control, dropping packets, routing, prioritization, — Who is allowed to access the device?
multiplexing — Is sharing permitted?

— How do you schedule device access?

. / .

February 2, 2015 ©20142015 Paul Kizyzanousks 2 February 2, 2015 ©20142015 Pau Krzyzanouski

Paul Krzyzanowski 5

CS 416: Operating Systems Design February 2, 2015

The End

Paul Krzyzanowski 6

