# Internet Technology

15. Things we didn't get to talk about

Paul Krzyzanowski

**Rutgers University** 

Spring 2016

### **Load Balancers**



NAT: consistent mapping to internal address

Load balancer: map to one of several internal addresses

- May be grouped by original destination address and/or port
- Connection affinity, source affinity (easier to manage sessions & stateful behavior
- Distribution: round robin, weighted round robin, fastest SYN-ACK

\_

### Software Defined Networking

- Routers & switches are proprietary hardware
  - Evolve slowly (usually designed with custom ASICs)
  - Need to be configured individually making changes in a large organization is a pain
- But the computers connected to the network
  - Can change spontaneously thanks to VMs

It can take minutes (or seconds) to bring up or reconfigure a node ... but days to reconfigure a network!

## Software Defined Networking (SDN)

- "Standard" software-based approach to managing network hardware
  - Decouples the network control & forwarding functions
  - OpenFlow<sup>™</sup> dominant SDN protocol, defined by the Open Networking Foundation (ONF)

#### Features

- Directly programmable: decoupled from forwarding engine
- Dynamic: easy for administrators to make spontaneous changes
- Centrally-managed via SDN controllers: global view of an organization's network – which appears as a single switch
- Programmatic configuration: open APIs

SDNs allow you to mix and match network vendors

### **Network Virtualization**

- Virtualization & Cloud computing
  - Let someone else manage resources for you
  - Access computing, storage, & networking resources without worrying about where they are or how they are implemented

### Virtual machines → software defined data center

- Create logical networks that are decoupled from the underlying hardware
  - Software-based view of networking HW (switches, routers, firewalls, load balancers, VPNs)
  - Physical hardware is responsible for forwarding packets

### **Network Virtualization**

- Virtual Machines (VMs) send standard layer 2 (ethernet) frames
- Hypervisor encapsulates the frame in a UDP datagram
  - VXLAN: Virtual Extensible LAN Layer 2 over Layer 3 encapsulation



- Datagrams are forwarded to the destination
- Destination decapsulates headers & sends original frame to the VM
- Create overlay virtual network topologies on a common network
  - Central management (via APIs)
  - Virtual switches (vSwitch) or virtual routers at each device route traffic

See Open vSwitch

## Multiprotocol Label Switching (MPLS)

- Use fixed-length packet label to decide where to forward a packet
  - Routers do not have to look at IP headers
  - Each destination is associated with a 20-bit label
- Routing:
  - First device looks up the final destination router & pre-determined path
  - Label is used to route the traffic via MPLS-aware routers
  - Final MPLS router removes the label



# Multiprotocol Label Switching (MPLS)

- Original reason for MPLS
  - Improves performance: simple lookup, no IP header modification
    - No need to do longest prefix matching
  - But ASICs can handle tens of millions of IP lookups per second
    - Although they can be expensive
- Why is MPLS still used?
  - Protocol independent
    - No dependence on data link layer (2) or network layer (3)
    - Support routing of IP traffic as well as other data services
  - Supports traffic engineering
    - E.g., distribute traffic among several links not just shortest path
      - Choose uncongested path with higher latency than a "better" congested path
    - Routing is transparent to the IP layer
    - Bandwidth reservation with RSVP-TE
  - Enables resilient networks (Fast Reroute)

MPLS is layer 2.5!

### Wide Area Ethernet (WAE)

- Virtual Private LAN Services (VPLS)
- Provide the simplicity of a "flat" Ethernet
- Makes multiple sites look like they are on one logical Ethernet
- Common deployments
  - Ethernet (in building) MPLS (wide area) Ethernet (in building)
  - Carrier-Ethernet Transport

# Internet of Things

- In-home
  - Connectivity
    - Ad-hoc mesh networks (ZigBee): each node participates in routing route discovery
    - Wi-Fi
    - Bluetooth
  - Lights, thermostats, switches, appliances
- Wide area
  - Cellular connectivity (usually)
  - Microcontrollers (usually)
  - Sensors
  - Internet access
  - Back-end acquisition & analytics
  - Loose connectivity
  - Domains: smart grid, smart cars, smart homes/cities, shipping containers

