
Internet Technology

07r. Assignment 6 review

Paul Krzyzanowski

Rutgers University

Spring 2016

1 March 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Question 1a

TCP sequence numbers count bytes from a random

starting number.

If segment #2 has sequence # 110 and segment #1 had

sequence #90:

 Segment #1: contains bytes #90 … 109 ⇒ 20 bytes

 Segment #2: contains bytes #110... ?

2

Suppose Host A sends two TCP segments back to back to Host B over a TCP

connection. The first segment has sequence number 90; the second has

sequence number 110.

1a. How much data is in the first segment?

March 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Question 1b

TCP acknowledgements are always for the first missing

byte number.

If segment #2 is received (bytes 110…?) but segment #1 is

missing, that means the receiver expects to receive bytes

starting at 90.

It will send an ACK # 90.

3

Suppose Host A sends two TCP segments back to back to Host B over a TCP

connection. The first segment has sequence number 90; the second has

sequence number 110.

1b. Suppose that the first segment is lost but the second segment arrives at B. In

the acknowledgment that Host B sends to Host A, what will be the

acknowledgment number?

March 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Question 2a

(Note that although UDP and TCP use 16-bit

words in computing the checksum, for this problem

you are being asked to compute 8-bit sums.)

(a) Add digits

(b) Whenever there is an overflow, add 1

(c) Invert (complement) the result

It.

4

UDP and TCP use 1s complement for their checksums. Suppose you have the

following three 8-bit bytes:

 01010011

 01100110

 01110100

2a. What is the 1s complement of the sum

of these 8-bit bytes?

March 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

 0 1 0 1 0 0 1 1

+ 0 1 1 0 0 1 1 0

 1 0 1 1 1 0 0 1

 1 0 1 1 1 0 0 1

+ 0 1 1 1 0 1 0 0

 0 0 1 0 1 1 0 1

+ 1 (carry)

 0 0 1 0 1 1 1 0

~ 0 0 1 0 1 1 1 0

 1 1 0 1 0 0 0 1

Question 2b

To detect errors, the receiver adds all the 16-bit words of the segment, including

the checksum.

The result should be all bits 1.

If any bit of the result contains a zero, the receiver knows there is an error in the

segment.

5

Why is it that UDP takes the 1s complement of the sum; that is, why not just use

the sum?

With the 1s complement scheme, how does the receiver detect errors?

March 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Question 2c

No – any 1-bit error will be detected.

It will cause a 1 to become a 0 or a 0 to become a 1 in the sum.

6

(2c) Is it possible that a 1-bit error will go undetected?

March 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Question 2d

Yes, in some cases two-bit errors can be undetected.

For example, if the last digit of the first word is converted to a 0 and the last digit

of the second word is converted to a 1.

7

(2d) How about a 2-bit error?

March 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

 1 0 0 1

+ 1 0 1 1

 0 1 0 0

+ 1

 0 1 1 0

 1 0 0 1

 1 0 1 1

+ 1 0 0 1

 0 1 0 0

+ 1

 0 1 1 0

 1 0 0 1

Two bit errors

Same checksum

Question 3

RTT across the country ≈ 30 ms

Transmission rate, R = 109 bits/s

Packet size, L = 1500 bytes = 1500×8 = 12,000 bits

Transmission time, d = L/R = 12000 / 109 = 12/106 = 12 μs = 0.012 ms

8

Consider the cross-country example shown in Figure 3.17. How big would the

window size have to be for the channel utilization to be greater than 98%?

Suppose that the size of a packet is 1,500 bytes, including both header fields and

data.

March 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

See the text on the bottom of

page 215 and top of 217

From the text

Question 3 (continued)

RTT across the country ≈ 30 ms

Transmission rate, R = 109 bits/s

Packet size, L = 1500 bytes = 1500×8 = 12,000 bits

Transmission time, d = L/R = 12000 / 109 = 12/106 = 12 μs = 0.012 ms

Utilization for a stop-and-wait protocol (one packet followed by an ack) =

 = (L/R) / (RTT + L/R) = 0.012 / (30 + 0.012)

Utilization for a pipeline of N packets, U = (NL/R) / (RTT + L/R) =

 = 0.012N / (30 + 0.012)

Solve for N with U = 0.98 (98%)

(0.98 × 30.012)/0.012 = 2450.92 = 2451 packets

9

Consider the cross-country example shown in Figure 3.17. How big would the

window size have to be for the channel utilization to be greater than 98%?

Suppose that the size of a packet is 1,500 bytes, including both header fields and

data.

March 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

See the text on the bottom of

page 215 and top of 217

From the text

Question 4

At any given time t, SendBase – 1 is the sequence number of the last

byte that the sender knows has been received correctly, and in order, at

the receiver.

The actual last byte received (correctly and in order) at the receiver at

time t may be greater if there are acknowledgements in the pipe. Thus

 SendBase - 1 ≤ LastByteRcvd

10

What is the relationship between the variable SendBase in Section 3.5.4 and the

variable LastByteRcvd in Section 3.5.5?

March 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

LastByteRcvd: the number of the last byte in the

data stream that has arrived from the network and

has been placed in the receive buffer.

SendBase: the smallest sequence # of a

transmitted but unacknowledged byte

Question 5

• When, at time t, the sender receives an acknowledgement with value

y, the sender knows for sure that the receiver has received

everything up through y-1.

• The actual last byte received (correctly and in order) at the receiver at

time t may be greater if y ≤ SendBase or if there are other

acknowledgements in the pipe. Thus:

 y-1 ≤ LastByteRvcd

11

What is the relationship between the variable LastByteRcvd in Section 3.5.5 and

the variable y in Section 3.5.4?

March 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

y: value in the ACK field of a received segment

A little more about IPv6

March 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski 12

IPv6 Key Features

• Huge address space

– 128 vs 32 bits - four times as many bits as IPv4

– No need for NAT because there are enough addresses so each

device can have a unique address

• Simpler header

– Fields that are not always necessary are moved to an optional

section at the end

– Makes the router’s job easier

• IPv6 is a separate network-layer protocol from IPv4

– Routers & hosts need to be aware of it to use it

– Transport-layer protocols, TCP & UDP, remain exactly the same

March 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski 13

IPv6 Address Notation

• IPv4: 32 bits = 4 bytes

– We used ”dot decimal” notation: 4 decimal numbers separated by dots

– Example: 128.6.4.2

• IPv6: 128 bits = 16 bytes

– If we did the same thing:

 42.3.40.128.255.254.0.12.250.206.176.12.0.0.0.53

We don’t do this!

• Break up an IPv6 address into 8 16-bit blocks

• Each block is converted to hexadecimal and delimited with colons

 2a03:2880:fffe:000c:face:b00c:0000:0035

March 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski 14

16-bit block

Shortening the address

• Remove leading zeros

– Instead of 2a03:2880:fffe:000c:face:b00c:0000:0035

– We can write 2a03:2880:fffe:c:face:b00c:0:35

– Every 16-bit block must have at least one digit

• Compress zeros

– Some IPv6 addresses contain long sequences of 0s

– A single contiguous sequence of 16-bit blocks that contain all 0s can be

abbreviated as :: – a double-colon

– Example

• Instead of fe80:0:0:0:2aa:ff:fe9a:4ca2

• Write fe80::2aa:ff:fe9a:4ca2

• Instead of ff02:0:0:0:0:0:0:2

• Write ff02::2

– Cannot include zeros from parts of 16-bit blocks

– Can only be used once for an address (so you can figure out # of blocks)

March 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski 15

IPv4 CIDR Notation

• IP address contains two parts: network and host

• Classless Inter-Domain Routing (CIDR) notation identifies # of bits

that identify the network part of the address

– Routers look only at those bits when looking up an address to find a route

• Examples

– 15.240.238.61/8 - top 8 bytes identify the network

– 128.6.13.255/16 - ls.cs.rutgers.edu: top 16 bits identify the network

 That’s what routers outside of Rutgers care about – it is

 used to send datagrams to Rutgers

– 128.6.13.255/25 - ls.cs.rutgers.edu: top 25 bits identify the subnet within

 Rutgers

 This is only within Rutgers – Rutgers has many subnets

 and internal routers route datagrams between them

 based on the network prefix

March 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski 16

CIDR & IPv6 prefixes

Same CIDR notation for IPv6

21DA:D3::/48

21DA:00D3:0000:0000:0000:0000:0000:0000

• IPv6 logically breaks up a 128-bit address into two parts

– 64-bit network prefix – used for routing

– 64-bit interface identifier – identifies a host in a network

– Similar to IPv4 network & host numbers – but fixed bit lengths

March 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski 17

Top 48 bits: route prefix (= network ID)

64-bit network prefix 64-bit interface identifier

≥48-bit routing prefix ≤ 16-bit subnet ID

Used for global routing

Used for routing within an organization

Interface ID – derived from the link-layer

MAC address (e.g., ethernet address) or

manually assigned

The end

18 March 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

