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Question 1a 

TCP sequence numbers count bytes from a random 

starting number. 

If segment #2 has sequence # 110 and segment #1 had 

sequence #90: 

 Segment #1: contains bytes #90 … 109 ⇒ 20 bytes 

 Segment #2: contains bytes #110... ? 
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Suppose Host A sends two TCP segments back to back to Host B over a TCP 

connection. The first segment has sequence number 90; the second has 

sequence number 110. 

1a. How much data is in the first segment? 
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Question 1b 

TCP acknowledgements are always for the first missing 

byte number. 

If segment #2 is received (bytes 110…?) but segment #1 is 

missing, that means the receiver expects to receive bytes 

starting at 90. 

It will send an ACK # 90. 
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Suppose Host A sends two TCP segments back to back to Host B over a TCP 

connection. The first segment has sequence number 90; the second has 

sequence number 110. 

1b. Suppose that the first segment is lost but the second segment arrives at B. In 

the acknowledgment that Host B sends to Host A, what will be the 

acknowledgment number? 
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Question 2a 

(Note that although UDP and TCP use 16-bit 

words in computing the checksum, for this problem 

you are being asked to compute 8-bit sums.) 

(a) Add digits 

(b) Whenever there is an overflow, add 1 

(c) Invert (complement) the result 

It. 
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UDP and TCP use 1s complement for their checksums. Suppose you have the 

following three 8-bit bytes: 

        01010011 

        01100110 

        01110100 

2a. What is the 1s complement of the sum  

of these 8-bit bytes? 
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  0 1 0 1 0 0 1 1 

+ 0 1 1 0 0 1 1 0 

----------------- 

  1 0 1 1 1 0 0 1 

 

  1 0 1 1 1 0 0 1 

+ 0 1 1 1 0 1 0 0 

----------------- 

  0 0 1 0 1 1 0 1 

+               1 (carry) 

----------------- 

  0 0 1 0 1 1 1 0 

 

~ 0 0 1 0 1 1 1 0 

----------------- 

  1 1 0 1 0 0 0 1 



Question 2b 

To detect errors, the receiver adds all the 16-bit words of the segment, including 

the checksum.  

The result should be all bits 1.  

If any bit of the result contains a zero, the receiver knows there is an error in the 

segment. 
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Why is it that UDP takes the 1s complement of the sum; that is, why not just use 

the sum?   

With the 1s complement scheme, how does the receiver detect errors? 
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Question 2c 

No – any 1-bit error will be detected. 

It will cause a 1 to become a 0 or a 0 to become a 1 in the sum. 
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(2c) Is it possible that a 1-bit error will go undetected? 
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Question 2d 

Yes, in some cases two-bit errors can be undetected. 

For example, if the last digit of the first word is converted to a 0 and the last digit 

of the second word is converted to a 1. 
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(2d) How about a 2-bit error? 
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  1 0 0 1 

+ 1 0 1 1 

--------- 

  0 1 0 0 

+       1 

--------- 

  0 1 1 0 

  1 0 0 1 

  1 0 1 1 

+ 1 0 0 1 

--------- 

  0 1 0 0 

+       1 

--------- 

  0 1 1 0 

  1 0 0 1 

Two bit errors 

Same checksum 



Question 3 

RTT across the country ≈ 30 ms 

Transmission rate, R = 109 bits/s 

Packet size, L = 1500 bytes = 1500×8 = 12,000 bits 

Transmission time, d = L/R = 12000 / 109 = 12/106 = 12 μs = 0.012 ms 
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Consider the cross-country example shown in Figure 3.17. How big would the 

window size have to be for the channel utilization to be greater than 98%? 

Suppose that the size of a packet is 1,500 bytes, including both header fields and 

data. 
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See the text on the bottom of 

page 215 and top of 217 

From the text  



Question 3 (continued) 

RTT across the country ≈ 30 ms 

Transmission rate, R = 109 bits/s 

Packet size, L = 1500 bytes = 1500×8 = 12,000 bits 

Transmission time, d = L/R = 12000 / 109 = 12/106 = 12 μs = 0.012 ms 

Utilization for a stop-and-wait protocol (one packet followed by an ack) =  

 = (L/R) / (RTT + L/R) = 0.012 / (30 + 0.012) 

Utilization for a pipeline of N packets, U = (NL/R) / (RTT + L/R) = 

  = 0.012N / (30 + 0.012) 

Solve for N with U = 0.98 (98%) 

(0.98 × 30.012)/0.012 = 2450.92 = 2451 packets 
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Consider the cross-country example shown in Figure 3.17. How big would the 

window size have to be for the channel utilization to be greater than 98%? 

Suppose that the size of a packet is 1,500 bytes, including both header fields and 

data. 
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See the text on the bottom of 

page 215 and top of 217 

From the text  



Question 4 

At any given time t, SendBase – 1 is the sequence number of the last 

byte that the sender knows has been received correctly, and in order, at 

the receiver.  

The actual last byte received (correctly and in order) at the receiver at 

time t may be greater if there are acknowledgements in the pipe. Thus 

   SendBase - 1 ≤ LastByteRcvd 
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What is the relationship between the variable SendBase in Section 3.5.4 and the 

variable LastByteRcvd in Section 3.5.5? 
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LastByteRcvd: the number of the last byte in the 

data stream that has arrived from the network and 

has been placed in the receive buffer. 

SendBase: the smallest sequence # of a 

transmitted but unacknowledged byte 



Question 5 

• When, at time t, the sender receives an acknowledgement with value 

y, the sender knows for sure that the receiver has received 

everything up through y-1.  

• The actual last byte received (correctly and in order) at the receiver at 

time t may be greater if y ≤ SendBase or if there are other 

acknowledgements in the pipe. Thus: 

   y-1 ≤ LastByteRvcd 
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What is the relationship between the variable LastByteRcvd in Section 3.5.5 and 

the variable y in Section 3.5.4? 
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y: value in the ACK field of a received segment 



A little more about IPv6 
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IPv6 Key Features 

• Huge address space 

– 128 vs 32 bits - four times as many bits as IPv4 

– No need for NAT because there are enough addresses so each 

device can have a unique address 

• Simpler header 

– Fields that are not always necessary are moved to an optional 

section at the end 

– Makes the router’s job easier 

• IPv6 is a separate network-layer protocol from IPv4 

– Routers & hosts need to be aware of it to use it 

– Transport-layer protocols, TCP & UDP, remain exactly the same  
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IPv6 Address Notation 

• IPv4: 32 bits = 4 bytes 

– We used ”dot decimal” notation: 4 decimal numbers separated by dots 

– Example: 128.6.4.2 

• IPv6: 128 bits = 16 bytes 

– If we did the same thing: 

 42.3.40.128.255.254.0.12.250.206.176.12.0.0.0.53 

We don’t do this! 

 

• Break up an IPv6 address into 8 16-bit blocks 

• Each block is converted to hexadecimal and delimited with colons 

  2a03:2880:fffe:000c:face:b00c:0000:0035 
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16-bit block 



Shortening the address 

• Remove leading zeros 

– Instead of  2a03:2880:fffe:000c:face:b00c:0000:0035 

– We can write 2a03:2880:fffe:c:face:b00c:0:35 

– Every 16-bit block must have at least one digit 

• Compress zeros 

– Some IPv6 addresses contain long sequences of 0s 

– A single contiguous sequence of 16-bit blocks that contain all 0s can be 

abbreviated as :: – a double-colon 

– Example 

• Instead of  fe80:0:0:0:2aa:ff:fe9a:4ca2 

• Write  fe80::2aa:ff:fe9a:4ca2 

• Instead of  ff02:0:0:0:0:0:0:2 

• Write  ff02::2 

– Cannot include zeros from parts of 16-bit blocks 

– Can only be used once for an address (so you can figure out # of blocks) 
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IPv4 CIDR Notation 

• IP address contains two parts: network and host 

• Classless Inter-Domain Routing (CIDR) notation identifies # of bits 

that identify the network part of the address 

– Routers look only at those bits when looking up an address to find a route 

• Examples 

– 15.240.238.61/8 - top 8 bytes identify the network 

– 128.6.13.255/16  - ls.cs.rutgers.edu: top 16 bits identify the network 

    That’s what routers outside of Rutgers care about – it is 

    used to send datagrams to Rutgers 

– 128.6.13.255/25 - ls.cs.rutgers.edu: top 25 bits identify the subnet within 

    Rutgers 

    This is only within Rutgers – Rutgers has many subnets 

    and internal routers route datagrams between them 

    based on the network prefix 
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CIDR & IPv6 prefixes 

Same CIDR notation for IPv6 

21DA:D3::/48  

21DA:00D3:0000:0000:0000:0000:0000:0000 

 

• IPv6 logically breaks up a 128-bit address into two parts 

– 64-bit network prefix – used for routing 

– 64-bit interface identifier – identifies a host in a network 

– Similar to IPv4 network & host numbers – but fixed bit lengths 
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Top 48 bits: route prefix (= network ID) 

64-bit network prefix 64-bit interface identifier 

≥48-bit routing prefix ≤ 16-bit subnet ID 

Used for global routing 

Used for routing within an organization 

Interface ID – derived from the link-layer 

MAC address (e.g., ethernet address) or 

manually assigned 



The end 
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