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Locating content 

• Our discussion on peer-to-peer applications focused on 

content distribution 

– Content was fully distributed 

 

• How do we find the content? 

 

 

 

 

• Can we do better? 

2 

Napster Central server (hybrid architecture) 

Gnutella & Kazaa Network flooding 

Optimized to flood supernodes … but it’s still flooding 

BitTorrent Nothing!  

It’s somebody else’s problem 
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What’s wrong with flooding? 

• Some nodes are not always up and some are slower than 

others 

– Gnutella & Kazaa dealt with this by classifying some nodes as 

“supernodes” (called “ultrapeers” in Gnutella) 

 

• Poor use of network resources 

 

• Potentially high latency 

– Requests get forwarded from one machine to another 

– Back propagation (e.g., Gnutella design), where the replies go 

through the same chain of machines used in the query, increases 

latency even more 

 

3 March 5, 2013 2013 Paul Krzyzanowski 



Hash tables 

• Remember hash functions & hash tables? 

– Linear search: O(N) 

– Tree: O(logN) 

– Hash table: O(1) 
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What’s a hash function? (refresher) 

• Hash function 

– A function that takes a variable length input (e.g., a string)  

and generates a (usually smaller) fixed length result (e.g., an integer) 

– Example: hash strings to a range 0-6: 

• hash(“Newark”) → 1 

• hash(“Jersey City”) → 6 

• hash(“Paterson”) → 2 

• Hash table 

– Table of (key, value) tuples 

– Look up a key: 

• Hash function maps keys to a range 0 … N-1 

 table of N elements 

 i = hash(key) 

 table[i] contains the item 

– No need to search through the table! 
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Considerations with hash tables (refresher) 

• Picking a good hash function 

– We want uniform distribution of all values of key over the space 0 … N-1 

 

• Collisions 

– Multiple keys may hash to the same value 

• hash(“Paterson”) → 2 

• hash(“Edison”) → 2 

– table[i] is a bucket (slot) for all such (key, value) sets 

– Within table[i], use a linked list or another layer of hashing 

 

• Think about a hash table that grows or shrinks 

– If we add or remove buckets → need to rehash keys and move items 
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Distributed Hash Tables (DHT) 

• Create a peer-to-peer version of a (key, value) database 

 

• How we want it to work 

1. A peer queries the database with a key 

2. The database finds the peer that has the value 

3. That peer returns the (key, value) pair to the querying peer 

 

• Make it efficient! 

– A query should not generate a flood! 

 

• We’ll look at one DHT implementation called Chord 
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The basic idea 

• Each node (peer) is identified by an integer in the range [0, 2n-1] 

• Each key is hashed into the range [0, 2n-1] 

• Each peer will be responsible for specific keys 

– A key is stored at the closest successor node 

– This is the first node whose ID ≥ hash(key) 

 

• If we arrange the peers in a logical ring (incrementing IDs) then a 

peer needs to know only of its successor and predecessor 

– This limited knowledge of peers makes it an overlay network 
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Key assignment 

• Example: n=16; system with 4 nodes (so far) 

• A key is stored at a successor 

– a node whose value is ≥ hash(key) 
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Node 3 is responsible for 

keys 15, 0, 1, 2, 3 

Node 8 is responsible for 

keys 4, 5, 6, 7, 8 

Node 10 is responsible for 

keys 9, 10 

Node 14 is responsible for 

keys 11, 12, 13, 14 
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No nodes at these empty 

positions 
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Handling requests 

• Any peer can get a request (insert or query). If the hash(key) is not for its 

ranges of keys, it forwards the request to a successor. 

• The process continues until the responsible node is found 

– Worst case: with p nodes, traverse p-1 nodes; that’s O(N) (yuck!) 

– Average case: traverse p/2 nodes (still yuck!) 
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Node 3 is responsible for 

keys 15, 0, 1, 2, 3 

Node 8 is responsible for 

keys 4, 5, 6, 7, 8 

Node 10 is responsible for 

keys 9, 10 

Node 14 is responsible for 

keys 11, 12, 13, 14 
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Query( hash(key)=9 ) 

Node #10 can process the 

request 
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Let’s figure out three more things 

1. Adding/removing nodes 

2. Improving lookup time 

3. Fault tolerance 
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Adding a node 

• Some keys that were assigned to a node’s successor now get 

assigned to the new node 

• Data for those (key, value) pairs must be moved to the new node 
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Node 3 is responsible for 

keys 15, 0, 1, 2, 3 

Node 8 was responsible for 

keys 4, 5, 6, 7, 8 

Now it’s responsible for keys 

7, 8 

Node 10 is responsible for 

keys 9, 10 

Node 14 is responsible for 

keys 11, 12, 13, 14 
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New node added: ID = 6 

Node 6 is responsible 

for keys 4, 5, 6 
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Removing a node 

• Keys are reassigned to the node’s successor 

• Data for those (key, value) pairs must be moved to the successor 
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Node 3 is responsible for 

keys 15, 0, 1, 2, 3 

Node 8 is responsible for 

keys 7, 8 

Node 10 was responsible for 

keys 9, 10 

Node 14 was responsible for 

keys 11, 12, 13, 14 
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Node 10 removed 
Node 6 is responsible 

for keys 4, 5, 6 

Node 14 is now responsible 

for keys 9, 10 11, 12, 13, 14 
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Performance 

• We’re not thrilled about O(N) lookup 

 

• Simple approach for great performance  

– Have all nodes know about each other 

– When a peer gets a node, it searches its table of nodes for the 

node that owns those values 

– Gives us O(1) performance 

– Add/remove node operations must inform everyone 

– Not a good solution if we have millions of peers (huge tables) 
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Finger tables 

• Compromise to avoid huge per-node tables 

– Use finger tables to place an upper bound on the table size 

• Finger table = partial list of nodes 

• At each node, ith entry in finger table identifies node that 
succeeds it by at least 2i-1 in the circle 

– finger_table[0]: immediate (1st) successor 

– finger_table[1]: successor after that (2nd) 

– finger_table[2]: 4th successor 

– finger_table[3]: 8th successor 

– … 

• O(log N) nodes need to be contacted to find the node that 
owns a key 
 … not as cool as O(1) but way better than O(N) 
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Fault tolerance  

• Nodes might die 

– (key, value) data would need to be replicated 

– Create R replicas, storing each one at R-1 successor nodes in the ring 

• It gets a bit complex 

– A node needs to know how to find its successor’s successor (or more) 

• Easy if it knows all nodes! 

– When a node is back up, it needs to check with successors for updates 

– Any changes need to be propagated to all replicas 
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The end 
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