Internet Technology
O5r. Distributed Hash Tables

Paul Krzyzanowski
Rutgers University

Spring 2013

_

March 5, 2013 2013 Paul Krzyzanowski

p

Locating content

.

« Our discussion on peer-to-peer applications focused on
content distribution

— Content was fully distributed

« How do we find the content?

Napster

Central server (hybrid architecture)

Gnutella & Kazaa

Network flooding
Optimized to flood supernodes ... but it’s still flooding

BitTorrent

Nothing!
It's somebody else’s problem

« Can we do better?

March 5, 2013

2013 Paul Krzyzanowski

[What's wrong with flooding?

« Some nodes are not always up and some are slower than
others

— Gnutella & Kazaa dealt with this by classifying some nodes as
“supernodes” (called “ultrapeers” in Gnutella)

 Poor use of network resources

« Potentially high latency
— Requests get forwarded from one machine to another

— Back propagation (e.g., Gnutella design), where the replies go
through the same chain of machines used in the query, increases
latency even more

.

March 5, 2013 2013 Paul Krzyzanowski

(

Hash tables

« Remember hash functions & hash tables?
— Linear search: O(N)
— Tree: O(logN)
— Hash table: O(1)

.

March 5, 2013 2013 Paul Krzyzanowski

[What's a hash function? (refresher)

 Hash function

— A function that takes a variable length input (e.g., a string)

and generates a (usually smaller) fixed length result (e.g., an integer)
— Example: hash strings to a range 0-6:

* hash(“Newark”) — 1

* hash(“Jersey City”) — 6

* hash(“Paterson”) — 2

« Hash table
— Table of (key, value) tuples

— Look up a key:

« Hash function maps keys to arange 0 ... N-1
table of N elements
i = hash(key)
table[i] contains the item

— No need to search through the table!

.

March 5, 2013 2013 Paul Krzyzanowski

/ Considerations with hash tables (refresher)

» Picking a good hash function
— We want uniform distribution of all values of key over the space 0 ... N-1

» Collisions

— Multiple keys may hash to the same value

* hash(“Paterson”) — 2
» hash(“Edison”) — 2

— table[i] is a bucket (slot) for all such (key, value) sets
— Within table[i], use a linked list or another layer of hashing

« Think about a hash table that grows or shrinks
— If we add or remove buckets — need to rehash keys and move items

.

March 5, 2013 2013 Paul Krzyzanowski

-
Distributed Hash Tables (DHT)

« Create a peer-to-peer version of a (key, value) database

 How we want it to work
1. A peer queries the database with a key
2. The database finds the peer that has the value
3. That peer returns the (key, value) pair to the querying peer

* Make it efficient!
— A query should not generate a flood!

« We'll look at one DHT implementation called Chord

.

March 5, 2013 2013 Paul Krzyzanowski

/

The basic idea

« Each node (peer) is identified by an integer in the range [0, 2"-1]
« Each key is hashed into the range [0, 2"-1]

« Each peer will be responsible for specific keys
— Akey is stored at the closest successor node
— This is the first node whose ID = hash(key)

* If we arrange the peers in a logical ring (incrementing IDs) then a
peer needs to know only of its successor and predecessor

— This limited knowledge of peers makes it an overlay network

.

March 5, 2013 2013 Paul Krzyzanowski

(

Key assignment

.

Node 10 is responsible for
keys 9, 10

« Example: n=16; system with 4 nodes (so far)
» Akey is stored at a successor
No nodes at these empty

— a node whose value is = hash(key) positions

Node 14 is responsible for
keys 11, 12,13, 14

Node 3 is responsible for

/ keys 15, 0, 1, 2, 3

7 Node 8 is responsible for

keys 4,5,6,7, 8

March 5, 2013 2013 Paul Krzyzanowski

-
Handling requests

* Any peer can get a request (insert or query). If the hash(key) is not for its
ranges of keys, it forwards the request to a successor.

» The process continues until the responsible node is found
— Worst case: with p nodes, traverse p-1 nodes; that's O(N) (yuck!)

— Average case: traverse p/2 nodes (still yuck!) Query(hash(key)=9)

Node 14 is responsible for
keys 11, 12, 13, 14

Node 10 is responsible for
keys 9, 10

_

March 5, 2013 2013 Paul Krzyzanowski 10

(

Let's figure out three more things

.

1. Adding/removing nodes
2. Improving lookup time

3. Fault tolerance

March 5, 2013 2013 Paul Krzyzanowski

11

i Adding a node

« Some keys that were assigned to a node’s successor now get
assigned to the new node

« Data for those (key, value) pairs must be moved to the new node

Node 14 is responsible for
keys 11, 12,13, 14

Node 3 is responsible for

/ keys 15, 0, 1, 2, 3

Node 6 is responsible
for keys 4, 5, 6

Node 10 is responsible for New node added: ID = 6
keys 9, 10

Node 8 was responsible for
keys 4,5,6,7,8
Now it's responsible for keys

7,8
_

March 5, 2013 2013 Paul Krzyzanowski 12

-
Removing a node

» Keys are reassigned to the node’s successor

» Data for those (key, value) pairs must be moved to the successor

Node 14 was responsible for
keys 11, 12, 13, 14

Node 14 is now responsible
forkeys 9,1011, 12, 13,14 ™

Node 3 is responsible for

/ keys 15, 0, 1, 2, 3

Node 6 is responsible
for keys 4, 5, 6

Node 10 was responsible for
keys 9, 10

7 Node 8 is responsible for

keys 7, 8

.

March 5, 2013 2013 Paul Krzyzanowski 13

p

Performance

.

« We’re not thrilled about O(N) lookup

« Simple approach for great performance
— Have all nodes know about each other

— When a peer gets a node, it searches its table of nodes for the
node that owns those values

— Gives us O(1) performance
— Add/remove node operations must inform everyone

— Not a good solution if we have millions of peers (huge tables)

March 5, 2013 2013 Paul Krzyzanowski

14

p

Finger tables

_

« Compromise to avoid huge per-node tables
— Use finger tables to place an upper bound on the table size

* Finger table = partial list of nodes

« At each node, i'" entry in finger table identifies node that
succeeds it by at least 21 in the circle
— finger_table[0]: immediate (15!) successor
— finger_table[1]: successor after that (2"9)
— finger_table[2]: 4t successor
— finger_table[3]: 8t successor

* O(log N) nodes need to be contacted to find the node that
owns a key
. hot as cool as O(1) but way better than O(N)

March 5, 2013 2013 Paul Krzyzanowski 15

[

Fault tolerance

.

* Nodes might die
— (key, value) data would need to be replicated
— Create R replicas, storing each one at R-1 successor nodes in the ring

* |t gets a bit complex
— A node needs to know how to find its successor’s successor (or more)
« Easy if it knows all nodes!
— When a node is back up, it needs to check with successors for updates

— Any changes need to be propagated to all replicas

March 5, 2013 2013 Paul Krzyzanowski

16

_

The end

March 5, 2013

2013 Paul Krzyzanowski

17

