
Internet Technology
05r. Distributed Hash Tables

Paul Krzyzanowski

Rutgers University

Spring 2013

1 March 5, 2013 2013 Paul Krzyzanowski

Locating content

• Our discussion on peer-to-peer applications focused on

content distribution

– Content was fully distributed

• How do we find the content?

• Can we do better?

2

Napster Central server (hybrid architecture)

Gnutella & Kazaa Network flooding

Optimized to flood supernodes … but it’s still flooding

BitTorrent Nothing!

It’s somebody else’s problem

March 5, 2013 2013 Paul Krzyzanowski

What’s wrong with flooding?

• Some nodes are not always up and some are slower than

others

– Gnutella & Kazaa dealt with this by classifying some nodes as

“supernodes” (called “ultrapeers” in Gnutella)

• Poor use of network resources

• Potentially high latency

– Requests get forwarded from one machine to another

– Back propagation (e.g., Gnutella design), where the replies go

through the same chain of machines used in the query, increases

latency even more

3 March 5, 2013 2013 Paul Krzyzanowski

Hash tables

• Remember hash functions & hash tables?

– Linear search: O(N)

– Tree: O(logN)

– Hash table: O(1)

4 March 5, 2013 2013 Paul Krzyzanowski

What’s a hash function? (refresher)

• Hash function

– A function that takes a variable length input (e.g., a string)

and generates a (usually smaller) fixed length result (e.g., an integer)

– Example: hash strings to a range 0-6:

• hash(“Newark”) → 1

• hash(“Jersey City”) → 6

• hash(“Paterson”) → 2

• Hash table

– Table of (key, value) tuples

– Look up a key:

• Hash function maps keys to a range 0 … N-1

 table of N elements

 i = hash(key)

 table[i] contains the item

– No need to search through the table!

5 March 5, 2013 2013 Paul Krzyzanowski

Considerations with hash tables (refresher)

• Picking a good hash function

– We want uniform distribution of all values of key over the space 0 … N-1

• Collisions

– Multiple keys may hash to the same value

• hash(“Paterson”) → 2

• hash(“Edison”) → 2

– table[i] is a bucket (slot) for all such (key, value) sets

– Within table[i], use a linked list or another layer of hashing

• Think about a hash table that grows or shrinks

– If we add or remove buckets → need to rehash keys and move items

6 March 5, 2013 2013 Paul Krzyzanowski

Distributed Hash Tables (DHT)

• Create a peer-to-peer version of a (key, value) database

• How we want it to work

1. A peer queries the database with a key

2. The database finds the peer that has the value

3. That peer returns the (key, value) pair to the querying peer

• Make it efficient!

– A query should not generate a flood!

• We’ll look at one DHT implementation called Chord

7 March 5, 2013 2013 Paul Krzyzanowski

The basic idea

• Each node (peer) is identified by an integer in the range [0, 2n-1]

• Each key is hashed into the range [0, 2n-1]

• Each peer will be responsible for specific keys

– A key is stored at the closest successor node

– This is the first node whose ID ≥ hash(key)

• If we arrange the peers in a logical ring (incrementing IDs) then a

peer needs to know only of its successor and predecessor

– This limited knowledge of peers makes it an overlay network

8 March 5, 2013 2013 Paul Krzyzanowski

Key assignment

• Example: n=16; system with 4 nodes (so far)

• A key is stored at a successor

– a node whose value is ≥ hash(key)

0
1

2

3

4

5

6

7
8

9

10

11

12

13

14

15
Node 3 is responsible for

keys 15, 0, 1, 2, 3

Node 8 is responsible for

keys 4, 5, 6, 7, 8

Node 10 is responsible for

keys 9, 10

Node 14 is responsible for

keys 11, 12, 13, 14

9

No nodes at these empty

positions

March 5, 2013 2013 Paul Krzyzanowski

Handling requests

• Any peer can get a request (insert or query). If the hash(key) is not for its

ranges of keys, it forwards the request to a successor.

• The process continues until the responsible node is found

– Worst case: with p nodes, traverse p-1 nodes; that’s O(N) (yuck!)

– Average case: traverse p/2 nodes (still yuck!)

0
1

2

3

4

5

6

7
8

9

10

11

12

13

14

15
Node 3 is responsible for

keys 15, 0, 1, 2, 3

Node 8 is responsible for

keys 4, 5, 6, 7, 8

Node 10 is responsible for

keys 9, 10

Node 14 is responsible for

keys 11, 12, 13, 14

10

Query(hash(key)=9)

Node #10 can process the

request

March 5, 2013 2013 Paul Krzyzanowski

Let’s figure out three more things

1. Adding/removing nodes

2. Improving lookup time

3. Fault tolerance

11 March 5, 2013 2013 Paul Krzyzanowski

Adding a node

• Some keys that were assigned to a node’s successor now get

assigned to the new node

• Data for those (key, value) pairs must be moved to the new node

0
1

2

3

4

5

6

7
8

9

10

11

12

13

14

15
Node 3 is responsible for

keys 15, 0, 1, 2, 3

Node 8 was responsible for

keys 4, 5, 6, 7, 8

Now it’s responsible for keys

7, 8

Node 10 is responsible for

keys 9, 10

Node 14 is responsible for

keys 11, 12, 13, 14

12

New node added: ID = 6

Node 6 is responsible

for keys 4, 5, 6

March 5, 2013 2013 Paul Krzyzanowski

Removing a node

• Keys are reassigned to the node’s successor

• Data for those (key, value) pairs must be moved to the successor

0
1

2

3

4

5

6

7
8

9

10

11

12

13

14

15
Node 3 is responsible for

keys 15, 0, 1, 2, 3

Node 8 is responsible for

keys 7, 8

Node 10 was responsible for

keys 9, 10

Node 14 was responsible for

keys 11, 12, 13, 14

13

Node 10 removed
Node 6 is responsible

for keys 4, 5, 6

Node 14 is now responsible

for keys 9, 10 11, 12, 13, 14

March 5, 2013 2013 Paul Krzyzanowski

Performance

• We’re not thrilled about O(N) lookup

• Simple approach for great performance

– Have all nodes know about each other

– When a peer gets a node, it searches its table of nodes for the

node that owns those values

– Gives us O(1) performance

– Add/remove node operations must inform everyone

– Not a good solution if we have millions of peers (huge tables)

14 March 5, 2013 2013 Paul Krzyzanowski

Finger tables

• Compromise to avoid huge per-node tables

– Use finger tables to place an upper bound on the table size

• Finger table = partial list of nodes

• At each node, ith entry in finger table identifies node that
succeeds it by at least 2i-1 in the circle

– finger_table[0]: immediate (1st) successor

– finger_table[1]: successor after that (2nd)

– finger_table[2]: 4th successor

– finger_table[3]: 8th successor

– …

• O(log N) nodes need to be contacted to find the node that
owns a key
 … not as cool as O(1) but way better than O(N)

15 March 5, 2013 2013 Paul Krzyzanowski

Fault tolerance

• Nodes might die

– (key, value) data would need to be replicated

– Create R replicas, storing each one at R-1 successor nodes in the ring

• It gets a bit complex

– A node needs to know how to find its successor’s successor (or more)

• Easy if it knows all nodes!

– When a node is back up, it needs to check with successors for updates

– Any changes need to be propagated to all replicas

16 March 5, 2013 2013 Paul Krzyzanowski

The end

17 March 5, 2013 2013 Paul Krzyzanowski

