
Internet Technology
05. Transport Layer

Paul Krzyzanowski

Rutgers University

Spring 2016

1 CS 352 © 2013-2016 Paul Krzyzanowski March 29, 2016

Transport Layer

• Transport Layer

– Provides logical communication channels

between apps

• Transport layer managed by end systems

– Routers are unaware; they provide network layer

services

• Multiple transport protocols available

– Under IP: TCP, UDP, SCTP, and more

2

Application

Transport

Network

Data Link

Physical 1

2

3

4

5

6

7

Internet Protocol Layers

CS 352 © 2013-2016 Paul Krzyzanowski March 29, 2016

Transport Layer

• Network Layer

– Logical connection between hosts

• Transport Layer

– Logical connection between processes

– Transport layer multiplexing & demultiplexing

• Most common transport-layer protocols in IP:

TCP & UDP

– UDP: unreliable data transfer

– TCP

• Reliable data transfer

• In-order delivery

• Flow control

• Congestion control

3

Application

Transport

Network

Data Link

Physical 1

2

3

4

5

6

7

Internet Protocol Layers

segments

datagrams

frames

CS 352 © 2013-2016 Paul Krzyzanowski March 29, 2016

Today, we’ll discuss

• Transport layer multiplexing/demultiplexing

• Reliable data transfer

4 CS 352 © 2013-2016 Paul Krzyzanowski March 29, 2016

Transport Layer

Multiplexing & Demultiplexing

5 CS 352 © 2013-2016 Paul Krzyzanowski March 29, 2016

Transport Layer Multiplexing

• Problem:

Multiple communication channels over one network link

– This is a problem whenever a protocol at one layer is used by

multiple protocols or or communication sessions at a higher layer

6

Host A

Host B

Host C

socket i

socket j

socket k

socket l

socket m

socket n
socket o

socket p

Logical view of four transport layer communication streams

CS 352 © 2013-2016 Paul Krzyzanowski March 29, 2016

Transport Layer Multiplexing

• Problem:

Multiple communication channels over one network link

– This is a problem whenever a protocol at one level is used by

multiple protocols or or communication session at one

• Need to identify which segment belongs to which channel

7

Host A

Host B

Host C

socket i

socket j

socket k

socket l

socket m

socket n
socket o

socket p

Logical view at the network layer

network

driver

network

driver

network

driver

multiplexing demultiplexing

CS 352 © 2013-2016 Paul Krzyzanowski March 29, 2016

Host C

socket m

socket n
socket o

socket p

network

driver

Multiplexing

Multiplexing & Demultiplexing

8

Host C

socket m

socket n
socket o

socket p

network

driver

Demultiplexing

CS 352 © 2013-2016 Paul Krzyzanowski March 29, 2016

How is it done?

• Transport layer protocols in IP have port numbers

– 16 bit integers (0 .. 65535)

– IP header (network layer) has source address, destination address

– TCP/UDP headers (transport layer) have source port, destination port

• Each socket is uniquely identified in the operating system

• Before a socket can be used, it is created & named

– socket system call creates a unique socket

– bind system call associates a local address with the socket

• With an address of INADDR_ANY, the socket is associated with ALL local interfaces

• With a port of 0, the OS assigns a random unused port number to the socket

9 CS 352 © 2013-2016 Paul Krzyzanowski March 29, 2016

UDP multiplexing & demultiplexing

• A UDP socket is identified by its port number

• All UDP segments addressed to a specific port # will be delivered to the

socket identified by that port number

– A socket will request data via recv(), recvfrom(), or recvmsg() system calls

– OS looks for a UDP socket with a matching destination port: hash table of

socket structures; hash key created from UDP destination port

• Limited demultiplexing

– Segments addressed to the same (host, port) from different processes or

different systems will be delivered to the same socket!

– The receiver can get the source address & port to know how to address reply

messages

10 CS 352 © 2013-2016 Paul Krzyzanowski March 29, 2016

Why use UDP?

• Control the timing of data

– A UDP segment is passed to the network layer immediately for

transmission

– TCP uses congestion control to delay transmission

• Preserve message boundaries

– With TCP, multiple small messages may be consolidated into one

TCP segment

• No connection setup

– TCP requires a three-way handshake to establish a connection

• No state to keep track of

– Less memory, easier fault recovery, simple load balancing

• Less network overhead

– 8-byte header instead of TCP’s 20-byte header

11 CS 352 © 2013-2016 Paul Krzyzanowski March 29, 2016

UDP Structure

• Defined in RFC 768

• Eight byte header

12

Source Port # Dest Port #

Length Checksum

Application Data

32 bits

4 bytes

CS 352 © 2013-2016 Paul Krzyzanowski March 29, 2016

UDP Structure in context

Eight byte header within a 20 byte IP header

13

Source Port # Dest Port #

Length Checksum

Application Data

32 bits

4 bytes

IP options

Destination IP Address

Source IP Address

TTL Proto Checksum

ID
Frag

Offset F
la

g
s

V
e
rs

.

Length IHL DSCP

E
C

N
.

CS 352 © 2013-2016 Paul Krzyzanowski March 29, 2016

UDP Checksum

• IP does not guarantee error-free packet delivery

• The UDP header contains a 16-bit checksum

– Checks for data corruption

• Checksum is generated by the sender and validated only by the

receiver only: segments with bad checksums are simply dropped

14

Source Port # Dest Port #

Length Checksum

Application Data

32 bits

4 bytes

Destination IP Address

Source IP Address

Zero Proto UDP length

IP pseudo header

for checksum computation

0

IP header fields are used

to protect against

misrouted segments

CS 352 © 2013-2016 Paul Krzyzanowski March 29, 2016

Set to 0 to compute initial checksum

Padded with 0 at the end to get to

a 16 bit boundary (if needed)
[not transmitted;

just for checksum]

UDP header

UDP Checksum Calculation

• Sender

– Iterate over 16-bit words in the Pseudo header + UDP segment

– UDP checksum field = 0

– Create a one’s complement checksum

• Add two 16-bit values. If overflow, add 1 to the result

• Do this for all the data you need to checksum

• Invert the bits of the result to get the checksum value

• Receiver

– Perform the same one’s complement sum on all data including
the checksum field

– The result should be all 1s (0xffff)

15 CS 352 © 2013-2016 Paul Krzyzanowski March 29, 2016

The same checksum calculation is used for the IP header, UDP header, & TCP header

One’s Complement Checksum Example

• How to compute a One’s complement

– Sum the numbers

– Add any overflow carry to the result

• Create checksum for:

• Then invert the bits

16

0 1 1 0 1 0 1 1 0 0 0 0 1 0 1 0

1 0 1 1 0 0 0 1 1 1 0 0 1 0 0 0

1 1 0 0 0 0 0 0 1 1 1 1 0 1 0 1

 0 1 1 0 1 0 1 1 0 0 0 0 1 0 1 0

 + 1 0 1 1 0 0 0 1 1 1 0 0 1 0 0 0

= 1 0 0 0 1 1 1 0 0 1 1 0 1 0 0 1 0

 + 1

 = 0 0 0 1 1 1 0 0 1 1 0 1 0 0 1 1

 + 1 1 0 0 0 0 0 0 1 1 1 1 0 1 0 1

 = 1 1 0 1 1 1 0 1 1 1 0 0 1 0 0 0

~ 1 1 0 1 1 1 0 1 1 1 0 0 1 0 0 0

= 0 0 1 0 0 0 1 0 0 0 1 1 0 1 1 1 checksum

March 29, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

One’s Complement Checksum Example

• Validate

– Sum the numbers, including the checksum

• A result of all 1’s (= -0) means the transmission was good

17

0 1 1 0 1 0 1 1 0 0 0 0 1 0 1 0

1 0 1 1 0 0 0 1 1 1 0 0 1 0 0 0

1 1 0 0 0 0 0 0 1 1 1 1 0 1 0 1

0 0 1 0 0 0 1 0 0 0 1 1 0 1 1 1

 0 1 1 0 1 0 1 1 0 0 0 0 1 0 1 0

 + 1 0 1 1 0 0 0 1 1 1 0 0 1 0 0 0

= 1 0 0 0 1 1 1 0 0 1 1 0 1 0 0 1 0

 + 1

 = 0 0 0 1 1 1 0 0 1 1 0 1 0 0 1 1

 + 1 1 0 0 0 0 0 0 1 1 1 1 0 1 0 1

 = 1 1 0 1 1 1 0 1 1 1 0 0 1 0 0 0

 + 0 0 1 0 0 0 1 0 0 0 1 1 0 1 1 1

 = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 add the checksum

add checksum

March 29, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

TCP multiplexing & demultiplexing

• Every TCP socket is identified by:

(source address, destination address, source port, destination port)

• A TCP socket has a state:

– LISTEN: the socket is used only for accepting connections

– ESTABLISHED: the socket is connected

– Other states that we’ll ignore for now:

• Connection setup:
– SYN_SENT: trying to establish a connection

– SYN_RCVD: received a connection request

• Connection teardown:
– FIN_WAIT_1: socket has been closed by the local application; no acknowledgement from remote

– FIN_WAIT_2: socket has been closed by the local application; remote acknowledged the closing

– CLOSING: socket has been closed by the local & remote apps; remote has not acknowledged close

– TIME_WAIT: connections closed; waiting to be sure that the remote side received the last ACK

• Let’s look at an example

18 CS 352 © 2013-2016 Paul Krzyzanowski March 29, 2016

Server: Create a new socket

19

Local Addr Local Port Remote Addr Rem Port State

Local Addr Local Port Remote Addr Rem Port State

svr = socket(AF_INET, SOCK_STREAM, 0);

Create a new socket at the server: it has no addresses so far

Client (135.10.10.1)

Server (192.11.5.8)

svr

Address family: Internet (IPv4)

Type: “stream” – connection-oriented (TCP)

N.B.: We refer to a socket table here for convenience but it is just a logical construct. The actual implementation is operating-

system specific but this data is generally stored in a list of socket buffer structures. On Linux, for example, the kernel function
tcp_v4_lookup will search for either a listening or an established socket with specific addresses and ports (see

net/ipv4/tcp_ipv4.c, around line 507)

CS 352 © 2013-2016 Paul Krzyzanowski March 29, 2016

Server: Bind – assign a local address

20

Local Addr Local Port Remote Addr Rem Port State

Local Addr Local Port Remote Addr Rem Port State

0.0.0.0 1234

bind(svr);

Assign a local address (INADDR_ANY) and port (1234) to the socket

Client (135.10.10.1)

Server (192.11.5.8)

svr

CS 352 © 2013-2016 Paul Krzyzanowski March 29, 2016

Server: Make it a listening socket

21

Local Addr Local Port Remote Addr Rem Port State

Local Addr Local Port Remote Addr Rem Port State

0.0.0.0 1234 LISTEN

listen(svr, 10);

Set the state of the socket to listen. This socket can only be used to accept connections

Client (135.10.10.1)

Server (192.11.5.8)

svr

CS 352 © 2013-2016 Paul Krzyzanowski March 29, 2016

Server: Wait for a connection

22

Local Addr Local Port Remote Addr Rem Port State

Local Addr Local Port Remote Addr Rem Port State

0.0.0.0 1234 LISTEN

snew = accept(svr);

Wait for an incoming connection on this socket

Client (135.10.10.1)

Server (192.11.5.8)

svr

CS 352 © 2013-2016 Paul Krzyzanowski March 29, 2016

Client: Create a new socket

23

Local Addr Local Port Remote Addr Rem Port State

Local Addr Local Port Remote Addr Rem Port State

0.0.0.0 1234 LISTEN

s = socket();

Create an new socket at the client: no addresses so far

Client (135.10.10.1)

Server (192.11.5.8)

svr

s

CS 352 © 2013-2016 Paul Krzyzanowski March 29, 2016

Client: Assign a local address & port #

24

Local Addr Local Port Remote Addr Rem Port State

0.0.0.0 7801

Local Addr Local Port Remote Addr Rem Port State

0.0.0.0 1234 LISTEN

bind(s);

Assign any local address (INADDR_ANY) and have the OS pick a port (port=0)

Client (135.10.10.1)

Server (192.11.5.8)

svr

s

CS 352 © 2013-2016 Paul Krzyzanowski March 29, 2016

Client: Connect to the server

25

Local Addr Local Port Remote Addr Rem Port State

0.0.0.0 7801

Local Addr Local Port Remote Addr Rem Port State

0.0.0.0 1234 LISTEN

192.11.5.8 1234 135.10.10.1 7801 SYN_RCVD

connect(s, dest_addr);

Connect to address 192.11.5.8, port 1234

Client (135.10.10.1)

Server (192.11.5.8)

svr

s

• Send a connection establishment request to address 192.11.5.8, port 1234

(TCP segment to port 1234 with a connection setup bit set; we’ll look at the exact handshake later)
• On the server, search the table for a LISTEN socket where

 packet’s destination addr == table’s local addr (0.0.0.0 matches any incoming addr)

 packet’s destination port == table’s local port
• Create a new socket for the connection

snew

connection

CS 352 © 2013-2016 Paul Krzyzanowski March 29, 2016

Client: Complete the connection

26

Local Addr Local Port Remote Addr Rem Port State

0.0.0.0 7801 192.11.5.8 1234 ESTABLISHED

Local Addr Local Port Remote Addr Rem Port State

0.0.0.0 1234 LISTEN

192.11.5.8 1234 135.10.10.1 7801 ESTABLISHED

connect(s, dest_addr);

Server acknowledges the connection; Client fills in the entry

Client (135.10.10.1)

Server (192.11.5.8)

svr

s

Now we can talk!

snew

CS 352 © 2013-2016 Paul Krzyzanowski March 29, 2016

Communicate

Client-to-server communication

– Server finds socket by searching for a TCP socket with these properties:

1. Status == ESTABLISHED

2. IP src addr == remote addr

3. TCP src port = remote port

4. IP dest addr == local addr

5. TCP dest port == local port

27

Local Addr Local Port Remote Addr Rem Port State

0.0.0.0 7801 192.11.5.8 1234 ESTABLISHED

Local Addr Local Port Remote Addr Rem Port State

0.0.0.0 1234 LISTEN

192.11.5.8 1234 135.10.10.1 7801 ESTABLISHED

Client (135.10.10.1)

Server (192.11.5.8)

svr

s

snew

CS 352 © 2013-2016 Paul Krzyzanowski March 29, 2016

Communicate

Server-to-client communication

– Client finds socket by searching for a TCP socket with these properties:

1. Status == ESTABLISHED

2. IP src addr == remote addr

3. TCP src port = remote port

4. IP dest addr == local addr

5. TCP dest port == local port

28

Local Addr Local Port Remote Addr Rem Port State

0.0.0.0 7801 192.11.5.8 1234 ESTABLISHED

Local Addr Local Port Remote Addr Rem Port State

0.0.0.0 1234 LISTEN

192.11.5.8 1234 135.10.10.1 7801 ESTABLISHED

Client (135.10.10.1)

Server (192.11.5.8)

svr

s

snew

CS 352 © 2013-2016 Paul Krzyzanowski March 29, 2016

Two clients sharing the same port

Different source address disambiguates the sessions

29

Local Addr Local Port Remote Addr Rem Port State

0.0.0.0 7801 192.11.5.8 1234 ESTABLISHED

Local Addr Local Port Remote Addr Rem Port State

0.0.0.0 7801 192.11.5.8 1234 ESTABLISHED

Local Addr Local Port Remote Addr Rem Port State

0.0.0.0 1234 LISTEN

192.11.5.8 1234 135.10.10.1 7801 ESTABLISHED

192.11.5.8 1234 135.10.10.1 7801 ESTABLISHED

Client (135.10.10.1)

Server (192.11.5.8)

svr

snew1

Client (135.10.10.2)

snew2

CS 352 © 2013-2016 Paul Krzyzanowski March 29, 2016

Two endpoints sharing the same address

The OS will not allow two sockets to share the same port on one client

30

Local Addr Local Port Remote Addr Rem Port State

0.0.0.0 7801 192.11.5.8 1234 ESTABLISHED

0.0.0.0 7802 192.11.5.8 1234 ESTABLISHED

Local Addr Local Port Remote Addr Rem Port State

0.0.0.0 1234 LISTEN

192.11.5.8 1234 135.10.10.1 7801 ESTABLISHED

192.11.5.8 1234 135.10.10.1 7802 ESTABLISHED

Client (135.10.10.1)

Server (192.11.5.8)

svr

snew1

snew2

CS 352 © 2013-2016 Paul Krzyzanowski March 29, 2016

Reliable Data Transfer

31 CS 352 © 2013-2016 Paul Krzyzanowski March 29, 2016

Reliable Data Transfer (RDT) Goal

Develop a protocol for transmitting data reliably over an

unreliable network

32

Reliable data

transfer protocol
Reliable data

transfer protocol

rdt_send

rdt_rcv

deliver

sending

application

receiving

application

udt_send

unreliable channel

data is received by the host

data is delivered to the app

CS 352 © 2013-2016 Paul Krzyzanowski March 29, 2016

RDT over a reliable channel

• Assume the channel is reliable

• Trivial – nothing to do!

Here’s the finite state machine (FSM):

33

Wait for

send

Wait for

receive

rdt_send(data)

packet = make_pkt(data)

udt_send(packet)

rdt_rcv(packet)

extract(packet, data)

deliver(data)

Sender Receiver

Event

Actions

CS 352 © 2013-2016 Paul Krzyzanowski March 29, 2016

RDT over a channel with bit errors

• All packets are received

• Some might be corrupt

• Approach

– Acknowledge each packet

• Positive acknowledgement (ACK): “I got it; looks good!”

• Negative acknowledgement (NAK): “Please repeat”

– Sender retransmits a packet if it receives a NAK

– ARQ (Automatic Repeat reQuest)

• Set of protocols that use acknowledgements & retransmission

34 CS 352 © 2013-2016 Paul Krzyzanowski March 29, 2016

We need to support three capabilities

1. Error detection

– How do we know if the packet is corrupt?

– Use a checksum (error detecting code)

2. Receiver feedback

– The receiver will acknowledge each packet with an ACK or NAK

3. Retransmission

– If a sender gets a NAK, the packet will be retransmitted

35 March 29, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

RDT over a channel with bit errors

36

Wait for

send

Wait for

receive

rdt_send(data)

packet = make_pkt(data, checksum)
udt_send(data)

Sender

Receiver

Wait for

ACK/
NAK

rdt_rcv(rcvpkt) && isNAK(rcvpkt)

udt_send(sendpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

Retransmit if NAK

The receiver got a good packet

rdt_rcv (rcvpkt) && corrupt(rcvpkt)

sndpkt = make_pkt(NAK)
udt_send(sendpkt)

rdt_rcv (rcvpkt) && not_corrupt(rcvpkt)

extract(rcvpkt, data)
deliver(data)

sndpkt = make_pkt(ACK)

udt_send(sndpkt)

We received a bad packet

Send a NAK

We received a good packet

Deliver it to the app

Send an ACK

Transmit a packet

START

March 29, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Stop-and-wait

• The sender cannot send any data until it receives an ACK

for the previously sent packet

• This type of protocol is a stop-and-wait protocol

37 CS 352 © 2013-2016 Paul Krzyzanowski March 29, 2016

What about a corrupted ACK/NAK message?

• The sender does not know whether the last packet was

received correctly or not

• We can

– Have the sender send a “please repeat” in response to a corrupt

ACK/NAK

• But what if that gets corrupted?

– Add a robust error correcting code

• Works for a channel that does not lose data

– Resend the data in response to a corrupted ACK/NAK

• Duplicate packets may be received

• Receiver needs to distinguish between new data & a retransmission

• Use a sequence number. Here, we only need a 1-bit number.

38 CS 352 © 2013-2016 Paul Krzyzanowski March 29, 2016

A 1-bit sequence number

Sequence bit flip-flops between consecutive messages

39

seq=0 data 0 seq=1 data 1 seq=0 data 2 seq=1 data 3

seq=0 data 0 seq=0 data 0 seq=1 data 1 seq=1 data 1

retransmission of previous packet

retransmission of previous packet

Alternating bit protocol

March 29, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

RDT over a channel with bit errors

40

Wait for

send
(seq=0)

rdt_send(data)

packet = make_pkt(0, data, checksum)
udt_send(data)

Sender

Wait for

ACK/
NAK 0

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) || isNAK(rcvpkt))

udt_send(sendpkt)

Retransmit if NAK or corrupt

Transmit a packet

seq=0

Wait for

ACK/
NAK 1

Wait for

send
(seq=1)

rdt_rcv(rcvpkt) &&

not_corrupt(rcvpkt) && isACK(rcvpkt))

The receiver got a good packet

rdt_send(data)

packet = make_pkt(1, data, checksum)
udt_send(data)

Transmit a packet

seq=1

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) || isNAK(rcvpkt))

udt_send(sendpkt)

Retransmit if

NAK or corrupt

rdt_rcv(rcvpkt) &&

not_corrupt(rcvpkt) && isACK(rcvpkt))

The receiver got a good packet

CS 352 © 2013-2016 Paul Krzyzanowski March 29, 2016

START

RDT over a channel with bit errors

41

Wait for

receive
(seq=0)

rdt_rcv(rcvpkt) && not_corrupt(rcvpkt)

&& has_seq0(rcvpkt)

extract(rcvpkt, data)

deliver(data)

sndpkt = make(ACK, checksum)
udt_send(sndpkt)

Receiver

Wait for

receive
(seq=1)

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

sndpkt = makepkt(NAK, checksum)
udt_send(sndpkt)

Corrupt data – send NAK

rdt_rcv(rcvpkt) && not_corrupt(rcvpkt)

&& has_seq0(rcvpkt)

sndpkt = makepkt(ACK, checksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) && not_corrupt(rcvpkt)

&& has_seq1(rcvpkt)

extract(rcvpkt, data)

deliver(data)

sndpkt = make(ACK, checksum)
udt_send(sndpkt)

Duplicate data – send ACK

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

sndpkt = makepkt(NAK, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && not_corrupt(rcvpkt)

&& has_seq1(rcvpkt)

sndpkt = makepkt(ACK, checksum)

udt_send(sndpkt)

Duplicate data –

send ACK

Corrupt data – send NAK

Received seq=0

Deliver to app; Send ACK

Received seq=1

Deliver to app; Send ACK

START

March 29, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

RDT over a channel with bit errors

• If a corrupted packet is received

– Send a NAK

• If a duplicate packet is received

– Send an ACK since we already processed the packet

• We can get rid of NAKs

– Send an ACK for the last correctly received packet

– If a sender receives duplicate ACKs,

it knows that the previous packet has not been received correctly

– Modify protocol: add sequence numbers to ACKs

42 CS 352 © 2013-2016 Paul Krzyzanowski March 29, 2016

RDT over a channel with bit errors – no NAK

43

Wait for

send
(seq=0)

rdt_send(data)

packet = make_pkt(0, data, checksum)
udt_send(data)

Sender

Wait for

ACK 0

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) || isACK (rcvpkt,1))

udt_send(sendpkt)

Retransmit if corrupt or

wrong ACK

Transmit a packet

seq=0

Wait for

ACK 1

Wait for

send
(seq=1)

rdt_rcv(rcvpkt) &&

not_corrupt(rcvpkt) && isACK(rcvpkt, 0))

The receiver got a good packet

rdt_send(data)

packet = make_pkt(1, data, checksum)
udt_send(data)

Transmit a packet

seq=1

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) || isACK (rcvpkt, 0))

udt_send(sendpkt)

Retransmit if

corrupt or wrong

ACK

rdt_rcv(rcvpkt) &&

not_corrupt(rcvpkt) && isACK(rcvpkt, 1))

The receiver got a good packet

Like the previous FSM but

isNAK is replaced with an

isACK check for the wrong

ACK #.

START

March 29, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

RDT over a channel with bit errors – no NAK

44

Wait for

receive
(seq=0)

rdt_rcv(rcvpkt) && not_corrupt(rcvpkt)

&& has_seq0(rcvpkt)

extract(rcvpkt, data)

deliver(data)

sndpkt = make(ACK, 0, checksum)
udt_send(sndpkt)

Receiver

Wait for

receive
(seq=1)

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) || has_seq0(rcvpkt))

sndpkt = makepkt(ACK, 0, checksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) && not_corrupt(rcvpkt)

&& has_seq1(rcvpkt)

extract(rcvpkt, data)

deliver(data)

sndpkt = make(ACK, 1, checksum)
udt_send(sndpkt)

Corrupt or duplicate packet.

Send ACK with previous # (0)

Received seq=0

Deliver to app; Send ACK #0

Received seq=1

Deliver to app; Send ACK #1

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) || has_seq1(rcvpkt))

sndpkt = makepkt(ACK, 1, checksum)

udt_send(sndpkt)

Corrupt or duplicate packet.

Send ACK with previous # (1)

CS 352 © 2013-2016 Paul Krzyzanowski March 29, 2016

RDT over a lossy channel

• We considered only bit errors

– Packets were always delivered

• How do we detect & deal with packet loss?

45 CS 352 © 2013-2016 Paul Krzyzanowski March 29, 2016

Dealing with packet loss

• Burden of detection & recovery is on sender

• If sender’s packet is lost OR receiver’s ACK is lost

– Sender will not get a reply from the receiver

• Approach

– Introduce a countdown timer. Set the timer at transmit

– If time-out and no reply, retransmit

– How long to wait? Maximum round-trip delay?

• Long wait until we initiate error recovery

• Pick a “likely loss” time

• Retransmit if no response within that time

• Introduces possibility of duplicate packets

– But we already know how to deal with them

46 CS 352 © 2013-2016 Paul Krzyzanowski March 29, 2016

RDT over lossy channel – with a timer

47

Wait for

send
(seq=0)

rdt_send(data)

packet = make_pkt(0, data, checksum)
udt_send(data)

start_timer

Sender

Wait for

ACK 0

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) || isACK (rcvpkt,1))

(do nothing; wait for a timeout)

Retransmit if corrupt, wrong ACK, or timeout

Transmit a packet

seq=0

Wait for

ACK/
NAK 1

Wait for

send
(seq=1)

rdt_rcv(rcvpkt) &&

not_corrupt(rcvpkt) && isACK(rcvpkt, 0))

stop_timer

The receiver got a good packet

rdt_send(data)

packet = make_pkt(1, data, checksum)
udt_send(data)

start_timer

Transmit a packet

seq=1

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) || isACK (rcvpkt, 0))

(do nothing; wait for a timeout)

Retransmit if

corrupt, wrong

ACK, or timeout

rdt_rcv(rcvpkt) &&

not_corrupt(rcvpkt) && isACK(rcvpkt, 1))

stop_timer

The receiver got a good packet

Like the previous FSM but

with a timer set on

transmit and a timeout

check when waiting for an

ACK

timeout

udt_send(sendpkt)
start_timer

timeout

udt_send(sendpkt)
start_timer

March 29, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

RDT – Alternating Bit Protocol: no loss

48

ti
m

e

Receiver Sender

Send P0

Receive P0

Send ACK0

Receive ACK0

Send P1

Receive ACK1

Send P0

Receive P1

Send ACK1

Receive P0

Send ACK0

CS 352 © 2013-2016 Paul Krzyzanowski March 29, 2016

RDT – Alternating Bit Protocol: lost Packet

49

ti
m

e

Receiver Sender

Send P0

Receive P0

Send ACK0

Receive ACK0

Send P1

Timeout – no ACK

Resend P1

Receive ACK1

Send P0

Receive P1

Send ACK1

Receive P0

Send ACK0

March 29, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

RDT – Alternating Bit Protocol: lost ACK

50

ti
m

e

Receiver Sender

Send P0

Receive P0

Send ACK0

Receive ACK0

Send P1

Timeout – no ACK

Resend P1

Receive ACK1

Send P0

Receive P1

Send ACK1

Receive P0

Send ACK0

Receive P1 (detect duplicate)

Send ACK1

March 29, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

RDT – Alternating Bit Protocol: early timeout

51

ti
m

e

Receiver Sender

Send P0

Receive P0

Send ACK0

Receive ACK0

Send P1

Timeout – delayed ACK

Resend P1

Receive ACK1

Send P0

Receive P1

Send ACK1

Receive P0

Send ACK0

Receive P1 (detect duplicate)

Send ACK1

Receive ACK1

Discard it

March 29, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Network utilization with stop-and-wait

• A stop-and-wait protocol gives us horrible network utilization

• Consider

– Cross-country link ⇒ Round-trip propagation delay (RTT) ≈ 30 ms

– Assume 1 Gbps link (ignore router delays), R = 109 bits/second

– Assume 1,000-byte packets (L = 8,000 bits)

– Time to transmit the packet: dtrans = L ÷ R = 8,000 ÷ 109 = 8 μs

• With a stop-and-wait protocol

– one-way delay = dtrans + dprop = (30 ms ÷ 2) + 8 μs = 15.008 ms

– Assume ACK packets are tiny; one-way delay for ACK packet = 15 ms

• ACK is received at 15.008 + 15 = 30.008 ms

– Next packet can be sent (15.008 + 15) = 30.008 ms after the first one

– Utilization = fraction of time sender is sending bits into the channel

52

U =
L / R

RTT + (L / R)
=
0.008

30.008
= 0.00027 = 0.027%

The sender can transmit 1,000 bytes in 30.008 ms: 267 kbps on a 1 Gbps link!

March 29, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Improve Network Utilization: Pipelining

• Don’t wait for an acknowledgement before sending the

next packet

• But then we need to

1. Increase the range of sequence numbers

• Each in-transit packet needs a unique number

2. Hold on to unacknowledged packets at sender

3. Hold on to out-of-sequence packets at receiver

• Two approaches for pipelined error recovery

– Go-Back-N

– Selective Repeat

53 March 29, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Go-Back-N (GBN)

• Sender can send multiple packets without waiting for ACKs

• No more than N unacknowledged packets

54

received ACK sent, no ACK not yet sent

base

window size N

next_seqnum

These packets

can be sent

CS 352 © 2013-2016 Paul Krzyzanowski March 29, 2016

Packets with sequence # ≥ base + N cannot be sent.

We can only have N unacknowledged packets

Go-Back-N (GBN)

• Sender can send multiple packets without waiting for ACKs

• No more than N unacknowledged packets

55

received ACK sent, no ACK not yet sent

base

window size N

next_seqnum

The window slides as

packets are
acknowledged

GBN = Sliding Window Protocol

CS 352 © 2013-2016 Paul Krzyzanowski March 29, 2016

Packets with sequence # ≥ base + N cannot be sent.

We can only have N unacknowledged packets

Go-Back-N (GBN)

• Sender can send multiple packets without waiting for ACKs

• No more than N unacknowledged packets

56

received ACK sent, no ACK not yet sent

base

window size N

next_seqnum

The window slides as

packets are
acknowledged

GBN = Sliding Window Protocol

CS 352 © 2013-2016 Paul Krzyzanowski March 29, 2016

Packets with sequence # ≥ base + N cannot be sent.

We can only have N unacknowledged packets

Go-Back-N (GBN)

• Sender can send multiple packets without waiting for ACKs

• No more than N unacknowledged packets

57

received ACK sent, no ACK not yet sent

base

window size N

next_seqnum

The window slides as

packets are
acknowledged

GBN = Sliding Window Protocol

CS 352 © 2013-2016 Paul Krzyzanowski March 29, 2016

Packets with sequence # ≥ base + N cannot be sent.

We can only have N unacknowledged packets

Go-Back-N (GBN)

• Sender can send multiple packets without waiting for ACKs

• No more than N unacknowledged packets

58

received ACK sent, no ACK not yet sent

base

window size N

next_seqnum

The window slides as

packets are
acknowledged

GBN = Sliding Window Protocol

CS 352 © 2013-2016 Paul Krzyzanowski March 29, 2016

Packets with sequence # ≥ base + N cannot be sent.

We can only have N unacknowledged packets

Sequence numbers

A sequence number will take up a fixed #, k, of bits in the header

– Range of sequence numbers is 0 .. 2k-1

– Modulo 2k arithmetic: 2k-1 increments to 0

59 March 29, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Extended FSM for a GBN sender

60

Wait

rdt_send(data)

if (next_seqnum < base+N) { // there’s room in the window
 sndpkt[next_seqnum] = make_pkt(next_seqnum, data, checksum)

 udt_send(sendpkt[next_seqnum])

 if (base == next_seqnum)
 start_timer

 next_seqnum++
} else {

 refuse_data(data) // cannot send

Sender

timeout

start_timer
for (i = base; i < next_seqnum; i++)

 udt_send(sndpkt[i])

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

Ignore corrupted ACKs

Send data if it’s in the window (we can have at most N unacknowledged packets)

rdt_rcv(rcvpkt) && not_corrupt(rcvpkt)

base = get_acknum(rcvpkt)+1
if (base == next_seqnum)

 stop_timer // we have the latest ACK

else
 start_timer // still waiting for ACKs

Cumulative acknowledgement:

Receipt of a sequence number n ACK
means that all packets up to and

including n have been received

Go Back N:

Timeout means resend all
unacknowledged packets

March 29, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Extended FSM for a GBN receiver

61

Wait

rdt_rcv(rcvpkt) && not_corrupt(rcvpkt) && has_seqnum(rcvpkt, expected_seqnum)

extract(rcvpkt, data)
deliver(data) // give it to the app

sndpkt = makepkt(expected_seqnum, ACK, checksum)

udt_send(sndpkt) // send the ACK to the sender
expected_seqnum++

Receiver

default

udt_send(sndpkt)

If we receive anything else, send the last ACK
expected_seqnum = 1

sndpkt = makepkt(0, ACK, checksum)

Initialize

We received a good packet with the expected sequence number

The receiver discards out-of-order packets

If packet n is lost and n+1 arrives, the receiver does not buffer packet n+1.

The sender will retransmit all unacknowledged packets (go back N).

The receiver has to only keep track of the next sequence number.

CS 352 © 2013-2016 Paul Krzyzanowski March 29, 2016

Selective Repeat

• Problem with Go-Back-N

– With a large window size and large delays, many packets can be in the

pipeline

– A single error can cause GBN to retransmit many packets

(all that are unacknowledged)

– If P(channel error) increases, the pipeline can become filled with excess
retransmissions

• Selective Repeat Protocol

– Retransmit only those packets that were lost or corrupted

– Receiver must acknowledge each correctly received packet

• Even if it is out of order

• Out of order packets must be buffered

– Window size N = limit of number of outstanding packets

• But some packets in the window may be acknowledged

• The window slides when the earliest packet in the window is acknowledged

62 March 29, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Selective Repeat Windows

63

send_base

window size N

next_seqnum

Sent & got ACK

Sent but no ACK

Ready to send

Cannot send

rcv_base

Sender’s view of sequence numbers

Receiver’s view

Out of order, ACKed

Expected

Acceptable

Unusable

window size N

CS 352 © 2013-2016 Paul Krzyzanowski March 29, 2016

Selective Repeat: sender operation

• Send requests from application

– Check next available sequence #

– If no room in window, reject (or buffer)

– Else send the packet (with sequence #)

• Timeout

– Each packet has its own timer

– Retransmit only the specific packet on timeout

• ACK received

– If packet is within window

• Mark packet as received

• If sequence # == send_base

 advance the base (start of window) to the next unacknowledged
 sequence number

64 March 29, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Out-of-order ACKs

65

send_base

window size N

next_seqnum

Sent & got ACK

Sent but no ACK

Ready to send

Cannot send

Sender’s view of sequence numbers

When an ACK for this packet

is received, send_base is
advanced to the next packet

with no ACK

CS 352 © 2013-2016 Paul Krzyzanowski March 29, 2016

Out-of-order ACKs

66

send_base

window size N

next_seqnum

Sent & got ACK

Sent but no ACK

Ready to send

Cannot send

Sender’s view of sequence numbers

The ACK for this packet was

received, so send_base was
advanced to the next packet

with no ACK

CS 352 © 2013-2016 Paul Krzyzanowski March 29, 2016

Selective Repeat: receiver operation

• Good packet with seq # in [rcv_base, rcv_base+N-1]

– Packet is within the receiver’s window

– Send ACK for that sequence #

– If sequence # == rcv_base

• Deliver packet to app and deliver all successive packets that have been

received

• Adjust start of window (rcv_base)

• Good packet with seq # in [rcv_base-N, rcv_base-1]

– Packet is within the before receiver’s window

– We already saw it – but send ACK anyway

• Anything else

– Ignore the packet

67 March 29, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Selective Repeat: receiving packets

68

rcv_base

Receiver’s view

Out of order, ACKed

Expected

Acceptable

Unusable

window size N

When this packet is received,

we can deliver it to the app
and deliver all received

packets immediately after it

CS 352 © 2013-2016 Paul Krzyzanowski March 29, 2016

Selective Repeat: receiving packets

69

rcv_base

Receiver’s view

Out of order, ACKed

Expected

Acceptable

Unusable

window size N

This packet was received, so

we delivered it and all
received packets immediately

after it.

deliver to app

The start of the window (base)

is moved to the first missing
packet. The start of the

window on the receiver is not

always the same as the start
of the window on the sender.

CS 352 © 2013-2016 Paul Krzyzanowski March 29, 2016

The end

70 CS 352 © 2013-2016 Paul Krzyzanowski March 29, 2016

