Internet Technology
05. Transport Layer

Paul Krzyzanowski
Rutgers University

Spring 2016

_

March 29, 2016 CS 352© 2013-2016 Paul Krzyzanowski

4)
Transport Layer

* Transport Layer

— Provides logical communication channels
between apps

« Transport layer managed by end systems

— Routers are unaware; they provide network layer
services

« Multiple transport protocols available
— Under IP: TCP, UDP, SCTP, and more

Internet Protocol Layers

_ J

March 29, 2016 CS 352© 2013-2016 Paul Krzyzanowski 2

4)
Transport Layer

* Network Layer
— Logical connection between hosts

* Transport Layer
— Logical connection between processes 6
— Transport layer multiplexing & demultiplexing

_ 5
* Most common transport-layer protocolsin IP: L_

TCP & UDP 4

— UDP: unreliable data transfer

 Reliable data transfer

* In-order delivery - 2

* Flow control
« Congestion control 1

Internet Protocol Layers

_ J

March 29, 2016 CS 352© 2013-2016 Paul Krzyzanowski 3

.

Today, we'll discuss
» Transport layer multiplexing/demultiplexing

* Reliable data transfer

March 29, 2016 CS 352© 2013-2016 Paul Krzyzanowski

_

Transport Layer
Multiplexing & Demultiplexing

March 29, 2016 CS 352© 2013-2016 Paul Krzyzanowski

4)
Transport Layer Multiplexing

* Problem:
Multiple communication channels over one network link

— This is a problem whenever a protocol at one layer is used by
multiple protocols or or communication sessions at a higher layer

4)

socket | e
socket j~) 4)
socketm
socket k
\HostA

Y, 7—socket n

socketo
- N - socket p

Host C

< Logical view of four transport layer communication streams
. J

March 29, 2016 CS 352© 2013-2016 Paul Krzyzanowski 6

\Host B

-
Transport Layer Multiplexing

* Problem:
Multiple communication channels over one network link

— This is a problem whenever a protocol at one level is used by
multiple protocols or or communication session at one

* Need to identify which segment belongs to which channel

multiplexing demultiplexing

socketi network

network
driver

socket n
socketo
socket p

network
driver

Host C

\HostB

Logical view at the network layer
.

March 29, 2016 CS 352© 2013-2016 Paul Krzyzanowski

(Multiplexing & Demultiplexing

_

Multiplexing

Demultiplexing

network
driver

socket n
socket o
socketp

March 29, 2016

CS 352© 2013-2016 Paul Krzyzanowski

-
How is it done?

« Transport layer protocols in IP have port numbers
— 16 bit integers (0 .. 65535)
— IP header (network layer) has source address, destination address
— TCP/UDP headers (transport layer) have source port, destination port

« Each socketis uniquely identified in the operating system

 Before a socket can be used, it is created & named
— socket system call creates a unique socket

— bind system call associates a local address with the socket
« With an address of INADDR_ANY, the socket is associated with ALL local interfaces
« With a port of 0, the OS assigns a random unused port number to the socket

.

March 29, 2016 CS 352© 2013-2016 Paul Krzyzanowski 9

/ UDP multiplexing & demultiplexing

« A UDP socket is identified by its port number

« All UDP segments addressed to a specific port # will be delivered to the
socket identified by that port number

— A socket will request data via recv(), recvfrom(), or recvmsg() system calls

— OS looks for a UDP socket with a matching destination port: hash table of
socket structures; hash key created from UDP destination port

 Limited demultiplexing

— Segments addressed to the same (host, port) from different processes or
different systems will be delivered to the same socket!

— The receiver can get the source address & port to know how to address reply
messages

.

March 29, 2016 CS 352© 2013-2016 Paul Krzyzanowski 10

Why use UDP?

Control the timing of data

— A UDP segment is passed to the network layer immediately for
transmission

— TCP uses congestion control to delay transmission

* Preserve message boundaries

— With TCP, multiple small messages may be consolidated into one
TCP segment

NoO connection setup
— TCP requires a three-way handshake to establish a connection

No state to keep track of
— Less memory, easier fault recovery, simple load balancing

Less network overhead
— 8-byte header instead of TCP’s 20-byte header

March 29, 2016 CS 352© 2013-2016 Paul Krzyzanowski

11

: UDP Structure

 Defined in RFC 768
 Eight byte header

_ 32 bits >
4 bytes
Source Port # Dest Port #
Length Checksum

Application Data

.

March 29, 2016 CS 352© 2013-2016 Paul Krzyzanowski

-

UDP Structure in context

Eight byte header within a 20 byte IP header

< 32 bits -
4 bytes
7 z
g HL |DSCP| O Length
2 Frag
D T Offset
TTL Proto Checksum

Source IP Address

Destination IP Address

IP options
Source Port # Dest Port #
Length Checksum
Application Data

.

March 29, 2016

CS 352©2013-2016

Paul Krzyzanowski

13

UDP Checksum

/
@

_

 |IP does not guarantee error-free packet delivery

« The UDP header contains a 16-bit checksum

— Checks for data corruption

« Checksumis generated by the sender and validated only by the
receiver only: segments with bad checksums are simply dropped

32 hits

n
»

<
<«

4 bytes

IP header fields are used

Source IP Address

to protect against —>

Destination IP Address

misrouted segments

||

_—

UDP header ——>

Zero Proto UDP length
Source Port # Dest Port #
Length Checksum

Application Data

B

| IP pseudo header
for checksum computation

Setto 0 to compute initial checksum

Padded with O at the end to getto
a 16 bit boundary (if needed)

[not transmitted;
just for checksum]

_/

March 29, 2016 CS 352© 2013-2016 Paul Krzyzanowski

14

(
@

UDP Checksum Calculation

.

« Sender
— Iterate over 16-bit words in the Pseudo header + UDP segment
— UDP checksum field = 0

— Create a one’s complement checksum
« Add two 16-bit values. If overflow, add 1 to the result
» Do this for all the data you need to checksum
 Invert the bits of the result to get the checksum value

» Recejver

— Perform the same one’s complement sum on all data including
the checksum field

— The result should be all 1s (0x£££¥£)

The same checksum calculation is used for the IP header, UDP header, & TCP header

March 29, 2016 CS 352© 2013-2016 Paul Krzyzanowski 15

-

One’s Complement Checksum Example

.

« How to compute a One’s complement
— Sum the numbers
— Add any overflow carry to the result

0110 1011 0000 1010
 Create checksum for: 1011 0001 1100 1000
1100 0000 1111 0101

0110 1011 0000 1010
+1011 0001 1100 1000
=10001 1100 1101 0010
+ 1
=0001 1100 1101 0011
+1100 0000 1111 0101
=1101 1101 1100 1000

 Then invert the bits

~1101 1101 1100 1000
=0010 0010 0011 O1112

<——— checksum

March 29, 2016 CS 352© 2013-2016 Paul Krzyzanowski

16

(One’s Complement Checksum Example)

 Validate
— Sum the numbers, including the checksum

0110 1011 0000 1010
1011 0001 1100 1000
1100 0000 1111 0101
add the checksum———> 0010 0010 0011 0111

0110 1011 0000 1010
+1011 0001 1100 1000
=10001 1100 1101 0010
+ 1
=0001 1100 1101 0011
+1100 0000 1111 0101
=1101 1101 1100 1000
+0010 0010 0011 0111 <
=1111 1111 1111 1111

add checksum

« Aresultof all 1's (= -0) means the transmission was good
\. J

March 29, 2016 CS 352© 2013-2016 Paul Krzyzanowski 17

(TCP multiplexing & demultiplexing

« Every TCP socket is identified by:

(source address, destination address, source port, destination port)

« ATCP socket has a state:
— LISTEN: the socket is used only for accepting connections
— ESTABLISHED: the socket is connected

— Other states that we’ll ignore for now:

« Connection setup:
— SYN_SENT: trying to establish a connection
— SYN_RCVD: received a connection request

« Connection teardown:
— FIN_WAIT_1: socket has been closed by the local application; no acknowledgement from remote
— FIN_WAIT_2: socket has been closed by the local application; remote acknowledged the closing
— CLOSING: socket has been closed by the local & remote apps; remote has not acknowledged close
— TIME_WAIT: connections closed; waiting to be sure that the remote side received the last ACK

« Let'slook at an example

.

March 29, 2016 CS 352© 2013-2016 Paul Krzyzanowski

18

4)
Server: Create a new socket

_ . Address family: Internet (IPv4)
svr = socket (AF_INET ’ SOCK_STREAM ’ 0) ’ Type: “stream” — connection-oriented (TCP) }

Create a new socket at the server: it has no addresses so far

Client (135.10.10.1)

Local Addr Local Port | Remote Addr Rem Port State

Server (192.11.5.8)

svr —

N.B.: We refer to a socket table here for convenience but it is just a logical construct. The actual implementation is operating-
system specific but this data is generally stored in a list of socket buffer structures. On Linux, for example, the kernel function
tcp_v4_lookup will search for either a listening or an established socket with specific addresses and ports (see
net/ipvéd/tcp_ipv4.c, around line 507)

. J

March 29, 2016 CS 352© 2013-2016 Paul Krzyzanowski 19

4)
Server: Bind — assign a local address

bind(svr) ;
Assign a local address (INADDR_ANY) and port (1234) to the socket

Client (135.10.10.1)

Local Addr Local Port | Remote Addr Rem Port State

Server (192.11.5.8)

svr — ‘ 0.0.0.0 ‘ 1234 ‘ ‘ ‘ \

_ J

March 29, 2016 CS 352© 2013-2016 Paul Krzyzanowski 20

4)
Server: Make it a listening socket

listen(svr, 10);
Set the state of the socket to listen. This socket can only be used to accept connections

Client (135.10.10.1)

Local Addr Local Port | Remote Addr Rem Port State

Server (192.11.5.8)

svr — ‘ 0.0.0.0 ‘ 1234 ‘ ‘ ‘ LISTEN \

_ J

March 29, 2016 CS 352© 2013-2016 Paul Krzyzanowski 21

4 I
Server: Wait for a connection

snew = accept(svr) ;
Wait for an incoming connection on this socket

Client (135.10.10.1)

Local Addr Local Port | Remote Addr Rem Port State

Server (192.11.5.8)

svr —> | 0.0.0.0 1234 LISTEN

_ J

March 29, 2016 CS 352© 2013-2016 Paul Krzyzanowski 22

()
Client: Create a new socket

socket () ;

S

Create an new socket at the client: no addresses so far

Client (135.10.10.1)

Local Addr Local Port | Remote Addr Rem Port State

Server (192.11.5.8)

svr —> | 0.0.0.0 1234 LISTEN

_ J

March 29, 2016 CS 352© 2013-2016 Paul Krzyzanowski 23

[Client: Assign a local address & port #)

bind(s) ;
Assign any local address (INADDR_ANY) and have the OS pick a port (port=0)

Client (135.10.10.1)

Local Addr Local Port | Remote Addr Rem Port State

0.0.0.0 7801 «— S

Server (192.11.5.8)

svr — ‘ 0.0.0.0 ‘ 1234 ‘ ‘ ‘ LISTEN \

_ J

March 29, 2016 CS 352© 2013-2016 Paul Krzyzanowski 24

4)
Client: Connectto the server

connect (s, dest addr);

Connect to address 192.11.5.8, port 1234

Client (135.10.10.1)

Local Addr Local Port | Remote Addr Rem Port State
0.0.0.0 7801 +«— S
connection Server (192.11.5.8)
> sSyr —> | 0.0.00 1234 LISTEN
snew —™ | 192.115.8 1234 135.10.10.1 7801 SYN_RCVD

« Send a connection establishmentrequestto address 192.11.5.8, port1234
(TCP segmentto port 1234 with a connection setup bit set; we'll look at the exact handshake later)
* Onthe server, searchthe table fora LISTEN socketwhere
packet’s destination addr == table’s local addr (0.0.0.0 matches any incoming addr)
packet’s destination port == table’s local port

L Create a new socketfor the connection)

March 29, 2016 CS 352© 2013-2016 Paul Krzyzanowski 25

[

Client: Complete the connection

_

connect (s, dest addr);

Server acknowledges the connection; Client fills in the entry

Client (135.10.10.1)

Now we can talk!

Local Addr Local Port | Remote Addr Rem Port State
0.0.0.0 7801 192.11.5.8 1234 ESTABLISHED |*— S
Server (192.11.5.8)
sSvr —> | 0.0.0.0 1234 LISTEN
snew — | 192.11.5.8 1234 135.10.10.1 7801 ESTABLISHED

March 29, 2016

CS 352© 2013-2016 Paul Krzyzanowski

26

4] I
Communicate

Client-to-server communication

— Server finds socket by searching for a TCP socketwith these properties:
1. Status == ESTABLISHED

IP src addr == remote addr

TCP src port = remote port

IP dest addr == local addr

TCP dest port == local port

a s e

Client (135.10.10.1)

Local Addr Local Port | Remote Addr Rem Port State

0.0.0.0 7801 192.11.5.8 1234 ESTABLISHED |+ — S

Server (192.11.5.8)

svr —> | 0.0.0.0 1234 LISTEN

shew —/ | 192.11.5.8 1234 135.10.10.1 7801 ESTABLISHED

. J

March 29, 2016 CS 352© 2013-2016 Paul Krzyzanowski 27

[

Communicate

Server-to-client communication

— Client finds socketby searching for a TCP socketwith these properties:
1. Status == ESTABLISHED

a s e

IP src addr == remote addr
TCP src port = remote port
IP dest addr == local addr

TCP dest port == local port

Client (135.10.10.1)

Local Addr Local Port | Remote Addr Rem Port State
-->1 0.0.0.0 7801 192.11.5.8 1234 ESTABLISHED |[+— S
Server (192.11.5.8)
svr —> | 0.0.0.0 1234 LISTEN
""""""""""" shew —/ | 192.1158 1234 135.10.10.1 7801 ESTABLISHED

March 29, 2016

CS 352© 2013-2016 Paul Krzyzanowski

28

(

Two clients sharing the same port

Different source address disambiguates the sessions

Client (135.10.10.2)

Local Addr Local Port | Remote Addr Rem Port State

~-->10.0.0.0 7801 192.11.5.8 1234 ESTABLISHED

|

1

|

i Client (135.10.10.1)

1

i Local Addr Local Port | Remote Addr Rem Port State

1

1

i 7771 0.0.00 7801 192.11.5.8 1234 ESTABLISHED

I i

1 1

1 1

1 1

I i

! i Server (192.11.5.8)

1 1

1 1

I i

. i svr —> | 0.0.0.0 1234 LISTEN

1

I |

i bommmmms shewl — | 192.1158 1234 135.10.10.1 7801 ESTABLISHED

1

1

ittt snew2 — | 192.1158 1234 135.10.10.1 7801 ESTABLISHED
_

J

March 29, 2016

CS 352© 2013-2016 Paul Krzyzanowski

29

/

Two endpoints sharing the same address

The OS will not allow two sockets to share the same port on one client

Client (135.10.10.1)

Local Addr Local Port | Remote Addr Rem Port State
F=---->|0.0.0.0 7801 192.11.5.8 1234 ESTABLISHED
~-=>| 0.0.0.0 7802 192.11.5.8 1234 ESTABLISHED

)

Server (192.11.5.8)

0.0.0.0 1234 LISTEN
192.11.5.8 1234 135.10.10.1 7801 ESTABLISHED
192.11.5.8 1234 135.10.10.1 7802 ESTABLISHED

J

March 29, 2016

CS 352© 2013-2016 Paul Krzyzanowski

30

_

Reliable Data Transfer

March 29, 2016 CS 352© 2013-2016 Paul Krzyzanowski

31

(Reliable Data Transfer (RDT) Goal

Develop a protocol for transmitting data reliably over an

unreliable network

sending
application

rdt_send

7
Reliable data udt_send E)
N

transfer protocol
unreliable channel

data is received bythe host

data is delivered to the app A

32

CS 352© 2013-2016 Paul Krzyzanowski

_

March 29, 2016

-
RDT over a reliable channel
* Assume the channel is reliable
e Trivial — nothing to do!
Here's the finite state machine (FSM):
- Event
rdt_send(data) <7 Actions rdt_rcv(packet)
packet = make_pkt(data) €--=="""" extract(packet, data)
udt_send(packet) deliver(data)
Wait for
send
Sender Receiver
_ J

March 29, 2016 CS 352© 2013-2016 Paul Krzyzanowski

33

-
RDT over a channel with bit errors

 All packets are received
« Some might be corrupt

« Approach

— Acknowledge each packet
» Positive acknowledgement (ACK): “I got it; looks goodq!”
* Negative acknowledgement (NAK): “Please repeat”

— Sender retransmits a packet if it receives a NAK

— ARQ (Automatic Repeat reQuest)
» Set of protocols that use acknowledgements & retransmission

.

March 29, 2016 CS 352© 2013-2016 Paul Krzyzanowski 34

-
We need to support three capabilities

1. Error detection
— How do we know if the packet is corrupt?
— Use a checksum (error detecting code)

2. Receiver feedback
— The receiver will acknowledge each packet with an ACK or NAK

3. Retransmission
— If a sender gets a NAK, the packet will be retransmitted

.

March 29, 2016 CS 352© 2013-2016 Paul Krzyzanowski

35

-
RDT over a channel with bit errors

rdt_send(data)

packet = make_pkt(data, checksum)
udt_send(data)

Sender

START)

Transmita packet udt_send(sendpkt)

Wait for
ACK/
NAK

Wait for
send

Retransmit if NAK

The receiver got a good packet

rdt_rcv(rcvpkt) && isACK(rcvpkt)

rdt_rcv(rcvpkt) && isNAK(rcvpkt)

rdt_rcv (rcvpkt) && corrupt(rcvpkt)

sndpkt = make_pkt(NAK) We received a bad packet
Receiver udt_send(sendpkt) Send a NAK
rdt_rcv (rcvpkt) && not_corrupt(rcvpkt)
extract(rcvpkt, data) We received a good packet
deliver(data) Deliverit to the app
sndpkt = make_pkt(ACK) Send an ACK
udt_send(sndpkt)
_

March 29, 2016 CS 352© 2013-2016 Paul Krzyzanowski

36

(

Stop-and-wait

.

* The sender cannot send any data until it receives an ACK
for the previously sent packet

 This type of protocol is a stop-and-wait protocol

March 29, 2016

CS 352© 2013-2016 Paul Krzyzanowski 37

4)
What about a corrupted ACK/NAK message?

* The sender does not know whether the last packet was
received correctly or not

* We can

— Have the sender send a “please repeat” in response to a corrupt
ACK/NAK

« But what if that gets corrupted?

— Add a robust error correcting code
* Works for a channel that does not lose data

— Resend the data in response to a corrupted ACK/NAK
» Duplicate packets may be received
* Receiver needs to distinguish between new data & a retransmission
* Use a sequence number. Here, we only need a 1-bit number.

. J

March 29, 2016 CS 352© 2013-2016 Paul Krzyzanowski 38

4)
A 1-bit sequence number

Sequence bit flip-flops between consecutive messages
Alternating bit protocol

seq=0 data O seg=1 data 1 seq=0 data 2 seqg=1 data 3

seq=0 data O seqg=0 data O seqg=1 data 1 seqg=1 data 1

retransmission of previous packet
retransmission of previous packet

. J

March 29, 2016 CS 352© 2013-2016 Paul Krzyzanowski 39

-
RDT over a channel with bit errors

rdt_send(data)

packet = make_pkt(0, data, checksum)
udt_send(data) rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) || isNAK(rcvpkt))

udt_send(sendpkt)

Sender

Transmita packet

W ait for seq=0

send
(seq=0)

Wait for
ACK/
NAK O

START >

Retransmit if NAK or corrupt

A
The receiver got a good packet
rdt_rcv(rcvpkt) && The receiver got a good packet
not_corrupt(rcvpkt) && isACK(rcvpkt)) rdt_rcv(rcvpkt) &&

not_corrupt(rcvpkt) && isACK(rcvpkt))

Retransmit if
NAK or corrupt

Wait for
send
(seq=1)

W ait for
ACK/
NAK 1

Transmita packet
,\ seq=1
rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) || isNAK(rcvpkt)) rdt_send(data)

udt_send(sendpkt) packet = make_pkt(1, data, checksum)
- udt_send(data)

.

March 29, 2016 CS 352© 2013-2016 Paul Krzyzanowski 40

(

RDT over a channel with bit errors

Receiver

Corrupt data — send NAK
rdt_rcv(rcvpkt) && corrupt(rcvpkt)

sndpkt = makepkt(NAK, checksum)
udt_send(sndpkt)

W ait for

START > receive

(seq=0)

Duplicate data —
send ACK
rdt_rcv(rcvpkt) && not_corrupt(rcvpkt)
&& has_seql(rcvpkt)

sndpkt = makepkt(ACK, checksum)
udt_send(sndpkt)

.

Received seq=0

Deliverto app; Send ACK
rdt_rcv(rcvpkt) && not_corrupt(rcvpkt)
&& has_seqO(rcvpkt)

extract(rcvpkt, data)
deliver(data)

sndpkt = make(ACK, checksum)
udt_send(sndpkt)

Wait for
receive

(seq=1)

Received seq=1

Deliverto app; Send ACK
rdt_rcv(rcvpkt) && not_corrupt(rcvpkt)
&& has_seql(rcvpkt)

extract(rcvpkt, data)
deliver(data)

sndpkt = make(ACK, checksum)
udt_send(sndpkt)

Corrupt data — send NAK

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

sndpkt = makepkt(NAK, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && not_corrupt(rcvpkt)
&& has_seqO(rcvpkt)

sndpkt = makepkt(ACK, checksum)
udt_send(sndpkt)

Duplicate data — send ACK

March 29, 2016

CS 352© 2013-2016 Paul Krzyzanowski

41

/

RDT over a channel with bit errors

« |f a corrupted packet is received
— Send a NAK

» If a duplicate packet is received
— Send an ACK since we already processed the packet

 We can get rid of NAKs
— Send an ACK for the last correctly received packet

— If a sender receives duplicate ACKs,
it knows that the previous packet has not been received correctly

— Modify protocol: add sequence numbers to ACKs

.

March 29, 2016 CS 352© 2013-2016 Paul Krzyzanowski

42

(

RDT over a channel with bit errors — no NAK

\

.

Sender

rdt_send(data)

packet = make_pkt(0, data, checksum)
udt_send(data) rdt_rcv(rcvpkt) &&

Transmita packet udt_send(sendpkt)

Transmita packet
,\ seq=1

(corrupt(rcvpkt) || iSACK (rcvpkt,1))

Wait for seq=0 o
START o artfor Retransmit if corrupt or
ACK O
(seq=0) wong ACK
A
The receiver got a good packet The receiver got a good packet
rdt_rcv(rcvpkt) &&
not_corrupt(rcvpkt) && isACK(rcvpkt, 1)) rdt_rcv(rcvpkt) &&
not_corrupt(rcvpkt) && isACK(rcvpkt, 0))
Retransmit if
corrupt or wong
ACK \ 4
Wait for watfor Like the previous FSM but
ACK1 (seq=1) isNAK is replaced with an

ISACK check for the wrong

rdt_rcv(rcvpkt) && ACK #.
(corrupt(rcvpkt) || iSACK (rcvpkt, 0)) rdt_send(data)
udt_send(sendpkt) packet = make_pkt(1, data, checksum)
- udt_send(data)
March 29, 2016 CS 352© 2013-2016 Paul Krzyzanowski 43

(RDT over a channel with bit errors — no NAK

\

. Received seq=0

Receiver Deliverto app; Send ACK #0
rdt_rcv(rcvpkt) && not_corrupt(rcvpkt)
&& has_seqO(rcvpkt)

extract(rcvpkt, data)

deliver(data)

sndpkt = make(ACK, 0, checksum)
udt_send(sndpkt)

Corrupt or duplicate packet.

Corrupt or duplicate packet. Send ACK with previous # (0)

Send ACK with previous # (1)

rdt_rcv(rcvpkt) &&

Wait for
receive
(seq=1)

W ait for
receive
(seq=0)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) || has_seql(rcvpkt))

sndpkt = makepkt(ACK, 1, checksum) Received seq=1

udt_send(sndpkt) Deliverto app; Send ACK #1
rdt_rcv(rcvpkt) && not_corrupt(rcvpkt)
&& has_seql(rcvpkt)

extract(rcvpkt, data)

deliver(data)

sndpkt = make(ACK, 1, checksum)
udt_send(sndpkt)

.

(corrupt(rcvpkt) || has_seqO(rcvpkt))
sndpkt = makepkt(ACK, 0, checksum)

March 29, 2016 CS 352© 2013-2016 Paul Krzyzanowski 44

-

RDT over a lossy channel

.

* We considered only bit errors
— Packets were always delivered

 How do we detect & deal with packet loss?

March 29, 2016 CS 352© 2013-2016 Paul Krzyzanowski

45

-
Dealing with packet loss

« Burden of detection & recovery is on sender

* |If sender’s packet is lost OR receiver’s ACK is lost
— Sender will not get a reply from the receiver

« Approach
— Introduce a countdown timer. Set the timer at transmit
— If time-out and no reply, retransmit

— How long to wait? Maximum round-trip delay?
» Long wait until we initiate error recovery
* Pick a “likely loss” time
« Retransmit if no response within that time

* Introduces possibility of duplicate packets
— But we already know how to deal with them

.

March 29, 2016 CS 352© 2013-2016 Paul Krzyzanowski

46

(

RDT over lossy channel — with a timer

\

rdt_send(data)

packet = make_pkt(0, data, checksum)
udt_send(data)
start_timer

Transmita packet
sei:O

The receiver got a good packet
rdt_rcv(rcvpkt) &&

not_corrupt(rcvpkt) && isACK(rcvpkt, 1))
stop_timer

Sender

W ait for
send
(seq=0)

timeout

udt_send(sendpkt)
start_timer

Retransmit if
corrupt, wong
ACK, ortimeou

Wait for
ACK/
NAK 1

Transmita packet
\ seq-=1

rdt_send(data)

packet = make_pkt(1, data, checksum)
udt_send(data)
start_timer

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) || iSACK (rcvpkt, 0))

(do nothing; wait for a timeout)

.

Wait for
ACK 0

Retransmit if corrupt, wong ACK, or timeout

rdt_rcv(rcvpkt) &&

(do nothing; wait for a timeout)

The receiver got a good packet

rdt_rcv(rcvpkt) &&

not_corrupt(rcvpkt) && isACK(rcvpkt, 0))

timeout

udt_send(sendpkt)
start_timer

Wait for
send
(seqg=

stop_timer

(corrupt(rcvpkt) || iISACK (rcvpkt,1))

Like the previous FSM but
with a timer set on
transmit and a timeout
check when waiting for an
ACK

1)

March 29, 2016 CS 352© 2013-2016 Paul Krzyzanowski

47

[

RDT — Alternating Bit Protocol: no loss

_

Sender

Send PO

Receive ACKO
Send P1

Receive ACK1
Send PO

time

%

>
<
o

/

(2
[

S
o /3
¥/

€ e - -

€-—=—=—====

Receiver

Receive PO
Send ACKO

Receive P1
Send ACK1

Receive PO
Send ACKO

March 29, 2016

CS 352© 2013-2016 Paul Krzyzanowski

48

[RDT — Alternating Bit Protocol: lost Packet

Sender

Send PO

Receive ACKO
Send P1

Timeout —no ACK
Resend P1

Receive ACK1
Send PO

time

_

T

Y

Z
&3

I P17
I I
| \
%
' :
I I
I Po :
I I
I
I ACKO |
I I
I
I I
v A 4

Receiver

Receive PO
Send ACKO

Receive P1

Send ACK1

Receive PO
Send ACKO

March 29, 2016

CS 352© 2013-2016 Paul Krzyzanowski

49

[RDT — Alternating Bit Protocol: lost ACK

Sender

Send PO

Receive ACKO
Send P1

Timeout —no ACK
Resend P1

Receive ACK1
Send PO

time

_

%

>
<
o

Y/

/

(2
[

]
5 |3
o

€ - —'-

Receiver

Receive PO
Send ACKO

Receive P1
Send ACK1

Receive P1 (detect duplicate)
Send ACK1

Receive PO
Send ACKO

March 29, 2016

CS 352© 2013-2016 Paul Krzyzanowski

50

4)
RDT — Alternating Bit Protocol: early timeout
° °
Sender | . Receiver
| |
Send PO :N
I |
[Receive PO
Send ACKO
Receive ACKO
Send P1
Receive P1
Timeout —delayed ACK Send ACK1
Resend P1
Receive ACK1 | Receive P1 (detect duplicate)
Send PO Send ACK1
Receive ACK1 : Receive PO
Discard it , pcK0 1 Send ACKO
| |
| |
| |
| |
I |
| |
1) | |
= v
_ - Y,

March 29, 2016 CS 352© 2013-2016 Paul Krzyzanowski 51

-
Network utilization with stop-and-wait

« Astop-and-walit protocol gives us horrible network utilization

« Consider
— Cross-country link = Round-trip propagation delay (RTT)= 30 ms
— Assume 1 Gbps link (ignore router delays), R = 10° bits/second
— Assume 1,000-byte packets (L = 8,000 hits)
— Time to transmit the packet: di,,s=L+ R =8,000+ 10°= 8 us

« With a stop-and-wait protocol
— one-way delay = dyans + dyrop = (30 ms + 2) + 8 uys = 15.008 ms
— Assume ACK packets are tiny; one-way delay for ACK packet = 15 ms
+ ACKisreceivedat 15.008 + 15 = 30.008 ms
— Next packet can be sent (15.008 + 15) = 30.008 ms after the first one

— Utilization = fraction of time sender is sending bits into the channel

L/R _ 0.008

- = =0.00027 =0.027%
RTT +(L/R) 30.008

The sender can transmit 1,000 bytes in 30.008 ms: 267 kbps on a 1 Gbps link!

.

March 29, 2016 CS 352© 2013-2016 Paul Krzyzanowski

52

/

Improve Network Utilization: Pipelining

.

« Don’t wait for an acknowledgement before sending the
next packet

 But then we need to

1. Increase the range of sequence numbers
« Each in-transit packet needs a unique number

2. Hold on to unacknowledged packets at sender
3. Hold on to out-of-sequence packets at receiver

« Two approaches for pipelined error recovery
— Go-Back-N
— Selective Repeat

March 29, 2016 CS 352© 2013-2016 Paul Krzyzanowski

53

" Go-Back-N (GBN)

« Sender can send multiple packets without waiting for ACKs

* No more than N unacknowledged packets

window size N

received ACK sent, no ACK not yet sent

A A
[1 \

A
[|

base next_segnum

Packets with sequence # = base + N cannot be sent.

These packets
We can only have N unacknowledged packets

can be sent

. J

March 29, 2016 CS 352© 2013-2016 Paul Krzyzanowski 54

" Go-Back-N (GBN)

« Sender can send multiple packets without waiting for ACKs

The window slides as J

* No more than N unacknowledged packets packets are

acknowledged

window size N

received ACK sent, no ACK not yet sent

A A
[1 \

A
[|

base next_segnum

Packets with sequence # = base + N cannot be sent.
We can only have N unacknowledged packets

L GBN = Sliding Window Protocol)

March 29, 2016 CS 352© 2013-2016 Paul Krzyzanowski 55

" Go-Back-N (GBN)

« Sender can send multiple packets without waiting for ACKs

The window slides as J

* No more than N unacknowledged packets packets are

acknowledged

window size N

received ACK sent, no ACK not yet sent

\ \ \
[|

[1 |

T

base next_segnum

Packets with sequence # = base + N cannot be sent.
We can only have N unacknowledged packets

L GBN = Sliding Window Protocol)

March 29, 2016 CS 352© 2013-2016 Paul Krzyzanowski 56

" Go-Back-N (GBN)

« Sender can send multiple packets without waiting for ACKs

The window slides as J

* No more than N unacknowledged packets packets are

acknowledged

window size N

received ACK sent, no ACK not yet sent

\ \ \
[|

[1 |

|

base next_segnum

Packets with sequence # = base + N cannot be sent.
We can only have N unacknowledged packets

L GBN = Sliding Window Protocol)

March 29, 2016 CS 352© 2013-2016 Paul Krzyzanowski 57

" Go-Back-N (GBN)

« Sender can send multiple packets without waiting for ACKs

The window slides as J

* No more than N unacknowledged packets packets are

acknowledged

window size N

received ACK sent, no ACK not yet sent

A A
[1 |

A
[|

next_seqnum

Packets with sequence # = base + N cannot be sent.
We can only have N unacknowledged packets

L GBN = Sliding Window Protocol

March 29, 2016 CS 352© 2013-2016 Paul Krzyzanowski 58

(

Sequence numbers

.

A sequence number will take up a fixed #, k, of bits in the header

— Range of sequence numbersis 0 .. 2k-1

— Modulo 2% arithmetic: 2%-1 increments to O

March 29, 2016 CS 352© 2013-2016 Paul Krzyzanowski 59

/ Extended FSM for a GBN sender

Sender rdt_send(data)

if (next_segnum < base+N) {

udt_send(sendpkt[next_segnum])
if (base == next_seqnum)
start_timer
next_segnum-++
}else {
refuse_data(data) // cannot send

/)

\

rdt_rcv(rcvpkt) && not_corrupt(rcvpkt)

Ignore corrupted ACKs
rdt_rcv(rcvpkt) && corrupt(rcvpkt)

base = get_acknum(rcvpkt)+1
if (base == next_segnum)

stop_timer // we have the latest ACK
else

start_timer // still waiting for ACKs

.

Send data if it's in the window (we can have at most N unacknowledged packets)

// there’s room in the window
sndpkt[next_segnum] = make_pkt(next_seqnum, data, checksum)

Go Back N:

Timeout means resend all
unacknowledged packets

timeout

start_timer
for (i = base; i < next_segnum; i++)
udt_send(sndpkt]i])

Cumulative acknowledgement:
Receipt of a sequence number n ACK
means that all packets up to and
including n have been received

March 29, 2016

CS 352© 2013-2016 Paul Krzyzanowski 60

(Extended FSM for a GBN receiver

Receiver

We received a good packet with the expected sequence number
rdt_rcv(rcvpkt) && not_corrupt(rcvpkt) && has_segnum(rcvpkt, expected_segnum)

extract(rcvpkt, data)

deliver(data) // give it to the app

sndpkt = makepkt(expected_seqgnum, ACK, checksum)
udt_send(sndpkt) Il send the ACK to the sender
expected _segnum++

Initialize A If we receive anything else, send the last ACK
expected_segnum =1

default
udt_send(sndpkt)

sndpkt = makepkt(0, ACK, checksum)

The receiver discards out-of-order packets

If packet n is lost and n+1 arrives, the receiver does not buffer packet n+1.
The sender will retransmit all unacknowledged packets (go back N).

S The receiver has to only keep track of the next sequence number.

March 29, 2016 CS 352© 2013-2016 Paul Krzyzanowski

61

-
Selective Repeat

* Problem with Go-Back-N
— With a large window size and large delays, many packets can be in the
pipeline
— Asingle error can cause GBN to retransmit many packets
(all that are unacknowledged)

— If P(channel error) increases, the pipeline can become filled with excess
retransmissions

» Selective Repeat Protocol
— Retransmit only those packets that were lost or corrupted

— Receiver must acknowledge each correctly received packet
 Evenifitis out of order
» Out of order packets must be buffered

— Window size N = limit of number of outstanding packets

» But some packets in the window may be acknowledged
« The window slides when the earliest packet in the window is acknowledged

.

March 29, 2016 CS 352© 2013-2016 Paul Krzyzanowski

62

-

Selective Repeat Windows

L g

Sender’s view of sequence numbers

window size N

Sent & got ACK

D Sent but no ACK

Ready to send

l send_base

Receiver’s view

T rcv_base

L Cannot send

next_segniim

. Out of order, ACKed

D Expected

_

window size N
Acceptable

L . Unusable

March 29, 2016 CS 352© 2013-2016 Paul Krzyzanowski 63

-

Selective Repeat: sender operation

.

« Send requests from application
— Check next available sequence #
— If no room in window, reject (or buffer)
— Else send the packet (with sequence #)

e Timeout
— Each packet has its own timer
— Retransmit only the specific packet on timeout

 ACK received

— If packet is within window
« Mark packet as received
» If sequence # == send_base

advance the base (start of window) to the next unacknowledged
sequence number

March 29, 2016

CS 352© 2013-2016 Paul Krzyzanowski

64

-

L
=
. Sent & got ACK
Sender’s view of sequence numbers] sentbut no ack
window size N > l FELIDESI
L . Cannot send
lsend_base next_segnlim
N
When an ACK for this packet
is received, send_base is
advanced to the next packet
with no ACK
_

March 29, 2016 CS 352© 2013-2016 Paul Krzyzanowski 65

[
®
()
. Sent & got ACK
Sender’s view of sequence numbers] sentbut no ack
window size N > l FELIDESI
. Cannot send
g /
l send_base next_seqgnum
N
The ACK for this packet was
received, so send_base was
advanced to the next packet
with no ACK
_ J

March 29, 2016 CS 352© 2013-2016 Paul Krzyzanowski 66

(

Selective Repeat: receiver operation

.

« Good packet with seq # in [rcv_base, rcv_base+N-1]
— Packet is within the receiver’s window
— Send ACK for that sequence #

— If sequence # ==rcv_base

« Deliver packet to app and deliver all successive packets that have been
received

» Adjust start of window (rcv_base)

« Good packet with seq # in [rcv_base-N, rcv_base-1]
— Packet is within the before receiver’s window
— We already saw it — but send ACK anyway

« Anything else
— Ignore the packet

March 29, 2016 CS 352© 2013-2016 Paul Krzyzanowski

67

4)

Selective Repeat: receiving packets

Receiver’s view

gENE B IIIIII)IIIII

T rcv_base

()

. Out of order, ACKed

D Expected

. Acceptable

. Unusable
- v

window size N

When this packet is received,
we can deliver it to the app
and deliver all received
packets immediately after it

_ J

March 29, 2016 CS 352© 2013-2016 Paul Krzyzanowski 68

-

Selective Repeat: receiving packets

ideliver to app

T rcv_base

@

Receiver’s view

window size N
This packet was received, so
we delivered it and all
received packets immediately
after it.

Out of order, ACKed

P
L
D Expected
]
L

The start of the window (base)
is moved to the first missing
packet. The start of the
window on the receiver is not
always the same as the start

Acceptable

L Unusable

of the window on the sender.

_

March 29, 2016 CS 352© 2013-2016 Paul Krzyzanowski 69

_

The end

March 29, 2016

CS 352© 2013-2016 Paul Krzyzanowski

70

