
Internet Technology
04. Peer-to-Peer Applications

Paul Krzyzanowski

Rutgers University

Spring 2016

1 CS 352 © 2013-2016 Paul Krzyzanowski February 15, 2016

Peer-to-Peer (P2P) Application Architectures

• No reliance on a central server

• Machines (peers) communicate with

each other

• Pools of machines (peers) provide the

service

• Goals

– Robustness

• Expect that some systems may be down

– Self-scalability

• The system can handle greater workloads as

more peers are added

2

client server

peers

February 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Peer-to-Peer networking

– David Gelernter

 The Second Coming – A Manifesto

“If a million people use a web site simultaneously,

doesn’t that mean that we must have a heavy-duty

remote server to keep them all happy?

No; we could move the site onto a million desktops

and use the Internet for coordination.

Could amazon.com be an itinerant horde instead of

a fixed central command post? Yes.”

See http://edge.org/conversation/the-second-coming-a-manifesto

3 February 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Peer to Peer applications

• P2P targets diverse solutions

– Cooperative computation

– Communications (e.g., Skype)

– Exchanges, digital currency (bitcoin)

– DNS (including multicast DNS)

– Content distribution (e.g., BitTorrent)

– Storage distribution

• P2P can be a distributed server

– Lots of machines spread across multiple datacenters

Today, we’ll focus on file distribution

4 February 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Four key primitives

• Join/Leave

– How do you join a P2P system?

– How do you leave it?

– Who can join?

• Publish

– How do you advertise content?

• Search

– How do you find a file?

• Fetch

– How do you download the file?

5

Strategies:

- Central server

- Flood the query

- Route the query

February 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Example: Napster

• Background

– Started in 1999 by 19-year-old college dropout Shawn Fanning

– Built only for sharing MP3 files

– Stirred up legal battles with $15B recording industry

– Before it was shut down in 2001:

• 2.2M users/day, 28 TB data, 122 servers

• Access to contents could be slow or unreliable

• Big idea: Central directory, distributed contents

– Users register files in a directory for sharing

– Search in the directory to find files to copy

6 February 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Napster: Overview

Napster is based on a central directory

• Join

– On startup, a client contacts the central server

• Publish

– Upload a list of files to the central server

– These are the files you are sharing and are on your system

• Search

– Query the sever

– Get back one or more peers that have the file

• Fetch

– Connect to the peer and download the file

7 February 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Napster: Discussion

• Pros

– Super simple

– Search is handled by a single server

– The directory server is a single point of control

• Provides definitive answers to a query

• Cons

– Server has to maintain state of all peers

– Server gets all the queries

– The directory server is a single point of control

• No directory server, no Napster!

8 February 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Example: Gnutella

• Background

– Created by Justin Frankel and Tom Pepper (authors of Winamp)

– AOL acquired their company, Nullsoft in 1999

– In 2000, accidentally released gnutella

– AOL shut down the project but the code was released

• Big idea: create fully distributed file sharing

– Unlike Napster, you cannot shut down gnutella

9 February 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Gnutella: Overview

Gnutella is based on query flooding

• Join

– On startup, a node (peer) contacts at least one node

• Asks who its friends are

– These become its “connected nodes”

• Publish

– No need to publish

• Search

– Ask connected nodes. If they don’t know, they will ask their
connected nodes, and so on…

– Once/if the reply is found, it is returned to the sender

• Fetch

– The reply identifies the peer; connect to the peer via HTTP &
download

10 February 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Overlay network

An overlay network is a virtual network formed by peer connections

– Any node might know about a small set of machines

– “Neighbors” might not be physically close to you – they’re just who you know

11

Underlying IP Network

February 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Overlay network

An overlay network is a virtual network formed by peer connections

– Any node might know about a small set of machines

– “Neighbors” might not be physically close to you – they’re just who you know

12

Overlay Network

February 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Gnutella: Search

13

Query:

where is file X? Query:

where is file X?

Query:

where is file X?

Initial query sent to neighbors (“connected nodes”)

February 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Gnutella: Search

14

Query:

where is file X? Query:

where is file X?

Query:

where is file X?
Query:

where is file X?

Query:

where is file X? Query:

where is file X?

Query:

where is file X?

If a node does not have the answer, it forwards the query

Queries have a hop count (time to live) – so we avoid forwarding loops

February 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Gnutella: Search

15

Query:

where is file X? Query:

where is file X?

Query:

where is file X?
Query:

where is file X?

Query:

where is file X? Query:

where is file X?

Query:

where is file X?

If a node has the answer, it replies – replies get forwarded

I have X!

Reply

Reply

Reply

Reply

February 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Gnutella: Search

• Original protocol

– Anonymous: you didn’t know if the request you’re getting is from the

originator or the forwarder

– Replies went through the same query path

• Downloads

– Node connects to the server identified in the reply

– If a connection is not possible due to firewalls, the requesting node can

send a push request for the remote client to send it the file

16 February 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Peers do not have equal capabilities

• Network upstream and downstream bandwidth

• Connectivity costs (willingness to participate)

• Availability

• Compute capabilities

17 February 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Gnutella: Enhancements

• Optimizations

– Requester’s IP address sent in query to optimize reply

– Every node is no longer equal

• Leaf nodes & Ultrapeers

• Leaf nodes connect to a small number of ultrapeers

• Ultrapeers are connected to ≥ 32 other ultrapeers

• Route search requests through ultrapeers

• Downloads

– Node connects to the server identified in the reply

– If a connection is not possible due to firewalls, the requesting node can

send a push request for the remote client to send it the file

18 February 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Gnutella: Summary

• Pros

– Fully decentralized design

– Searching is distributed

– No control node – cannot be shut down

– Open protocol

• Cons

– Flooding is inefficient:

• Searching may require contacting a lot of systems; limit hop count

– Well-known nodes can become highly congested

– In the classic design, if nodes leave the service, the system is

crippled

19 February 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Example: FastTrack/Kazaa

• Background

– Kazaa & FastTrack protocol created in 2001

– Team of Estonian programmers – same team that will later create Skype

– Post-Napster and a year after Gnutella was released

– FastTrack: used by others (Grokster, iMesh, Morpheus)

• Proprietary protocol; Several incompatible versions

• Big idea: Some nodes are better than others

– A subset of client nodes have fast connectivity, lots of storage, and fast

processors

– These will be used as supernodes (similar to gnutella’s ultrapeers)

– Supernodes:

• Serve as indexing servers for slower clients

• Know other supernodes

20 February 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Kazaa: Supernodes

21 February 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Kazaa: publish a file

22

I have X

February 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Kazaa: search

23

Query X

Reply

query

query

query

query

query

Supernodes answer for all their peers (ordinary nodes)

February 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Kazaa: Discussion

Selective flooding of queries

• Join

– A peer contacts a supernode

• Publish

– Peer sends a list of files to a supernode

• Search

– Send a query to the supernode

– Supernodes flood the query to other supernodes

• Fetch

– Download the file from the peer with the content

24 February 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Kazaa: Summary

• Pros

– Similar to improved Gnutella

– Efficient searching via supernodes

– Flooding restricted to supernodes

• Cons

– Can still miss files

– Well-known supernodes provide opportunity to stop service

25 February 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

BitTorrent

• Background

– Introduced in 2002 by Bram Cohen

– Motivation

• Popular content exhibits temporal locality: flash crowds

– E.g., slashdot effect, CNN on 9/11, new movies, new OS releases

• Big idea: allow others to download from you while you are

downloading

– Efficient fetching, not searching

– Single publisher, many downloaders

26 February 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

BitTorrent: Overview

Enable downloads from peers

• Join

– No need to join

(seed registers with tracker server; peers register when they download)

• Publish

– Create a torrent file; give it to a tracker server

• Search

– Outside the BitTorrent protocol

– Find the tracker for the file you want, contact it to get a list of peers with

files

• Fetch

– Download chunks of the file from our peers

– At the same time, other peers may request chunks from you

27 February 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

BitTorrent: Publishing & Fetching

• To distribute a file

– Create a .torrent file

– Contains

 name, size, hash of each chunk, address of a tracker server.

– Start a seed node: initial copy of the full file

– Start the tracker for the file

• Tracker manages uploading & downloading of the content

• To get a file

– Get a .torrent file

– Contact tracker named in the file

• Get the list of seeders and other nodes with portions of the file

• Tracker will also announce you to otherså

– Contact a random node for a list of file chunk numbers

– Request a random block of the file

28 February 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

BitTorrent: Downloading a file in chunks

29

Tracker identifies:

(1) initial system(s) that has 100% of the file (the seed)

(2) which machines have some chunks of the file downloaded

Tracker

Complete file
Seed node (you can have multiple seeds)

Peer

Peer

Peer

Request block

Request block

When a peer finished downloading a file, it may become a seed and remain online

without downloading any content.

Swarm: set of peers involved in upload/download for a file

Leecher: a peer that is

downloading a file (and

offering uploads)

Seeder: a peer that has the

entire copy of the file

February 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

BitTorrent Summary

• Pros

– Scales well; performs well when many participants

– Gives peers an incentive to share

• It is sometimes not possible to download without offering to upload

• Cons

– Search is not a part of the protocol; relies on torrent index servers

– Files need to be large for this to work well

– Rare files do not offer distribution

– A tracker needs to be running to bootstrap the downloads

30 February 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Distributed Hash Tables

31 February 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Locating content

• Our discussion on peer-to-peer applications focused on

content distribution

– Content was fully distributed

• How do we find the content?

• Can we do better?

32

Napster Central server (hybrid architecture)

Gnutella & Kazaa Network flooding

Optimized to flood supernodes … but it’s still flooding

BitTorrent Nothing!

It’s somebody else’s problem

February 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

What’s wrong with flooding?

• Some nodes are not always up and some are slower than

others

– Gnutella & Kazaa dealt with this by classifying some nodes as

“supernodes” (called “ultrapeers” in Gnutella)

• Poor use of network (and system) resources

• Potentially high latency

– Requests get forwarded from one machine to another

– Back propagation (e.g., Gnutella design), where the replies go

through the same chain of machines used in the query, increases

latency even more

33 February 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Hash tables

• Remember hash functions & hash tables?

– Linear search: O(N)

– Tree: O(logN)

– Hash table: O(1)

34 February 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

What’s a hash function? (refresher)

• Hash function

– A function that takes a variable length input (e.g., a string)

and generates a (usually smaller) fixed length result (e.g., an integer)

– Example: hash strings to a range 0-6:

• hash(“Newark”) → 1

• hash(“Jersey City”) → 6

• hash(“Paterson”) → 2

• Hash table

– Table of (key, value) tuples

– Look up a key:

• Hash function maps keys to a range 0 … N-1

 table of N elements

 i = hash(key)

 table[i] contains the item

– No need to search through the table!

35 February 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Considerations with hash tables (refresher)

• Picking a good hash function

– We want uniform distribution of all values of key over the space 0 … N-1

• Collisions

– Multiple keys may hash to the same value

• hash(“Paterson”) → 2

• hash(“Edison”) → 2

– table[i] is a bucket (slot) for all such (key, value) sets

– Within table[i], use a linked list or another layer of hashing

• Think about a hash table that grows or shrinks

– If we add or remove buckets → need to rehash keys and move items

36 February 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Distributed Hash Tables (DHT)

• Create a peer-to-peer version of a (key, value) database

• How we want it to work

1. A peer queries the database with a key

2. The database finds the peer that has the value

3. That peer returns the (key, value) pair to the querying peer

• Make it efficient!

– A query should not generate a flood!

• We’ll look at one DHT implementation called Chord

37 February 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

The basic idea

• Each node (peer) is identified by an integer in the range [0, 2n-1]

– n is a big number, like 160 bits

• Each key is hashed into the range [0, 2n-1]

– E.g., SHA-1 hash

• Each peer will be responsible for a range of keys

– A key is stored at the closest successor node

– Successor node = first node whose ID ≥ hash(key)

• If we arrange the peers in a logical ring (incrementing IDs) then a

peer needs to know only of its successor and predecessor

– This limited knowledge of peers makes it an overlay network

38 February 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Chord & consistent hashing

• A key is hashed to an m-bit value: 0 … 2m-1

• A logical ring is constructed for the values 0 … 2m-1

• Nodes are placed on the ring at hash(IP address)

0
1

2

3

4

5

6

7
8

9

10

11

12

13

14

15
Node

hash(IP address) = 3

39 February 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Key assignment

• Example: n=16; system with 4 nodes (so far)

• Key, value data is stored at a successor

– a node whose value is ≥ hash(key)

0
1

2

3

4

5

6

7
8

9

10

11

12

13

14

15
Node 3 is responsible for

keys 15, 0, 1, 2, 3

Node 8 is responsible for

keys 4, 5, 6, 7, 8

Node 10 is responsible for

keys 9, 10

Node 14 is responsible for

keys 11, 12, 13, 14

40

No nodes at these empty

positions

February 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Handling query requests

• Any peer can get a request (insert or query). If the hash(key) is not for its

ranges of keys, it forwards the request to a successor.

• The process continues until the responsible node is found

– Worst case: with p nodes, traverse p-1 nodes; that’s O(N) (yuck!)

– Average case: traverse p/2 nodes (still yuck!)

0
1

2

3

4

5

6

7
8

9

10

11

12

13

14

15
Node 3 is responsible for

keys 15, 0, 1, 2, 3

Node 8 is responsible for

keys 4, 5, 6, 7, 8

Node 10 is responsible for

keys 9, 10

Node 14 is responsible for

keys 11, 12, 13, 14

41

Query(hash(key)=9)

Node #10 can process the

request

February 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Let’s figure out three more things

1. Adding/removing nodes

2. Improving lookup time

3. Fault tolerance

42 February 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Adding a node

• Some keys that were assigned to a node’s successor now get

assigned to the new node

• Data for those (key, value) pairs must be moved to the new node

0
1

2

3

4

5

6

7
8

9

10

11

12

13

14

15
Node 3 is responsible for

keys 15, 0, 1, 2, 3

Node 8 was responsible for

keys 4, 5, 6, 7, 8

Now it’s responsible for keys

7, 8

Node 10 is responsible for

keys 9, 10

Node 14 is responsible for

keys 11, 12, 13, 14

43

New node added: ID = 6
Node 6 is responsible

for keys 4, 5, 6

February 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Removing a node

• Keys are reassigned to the node’s successor

• Data for those (key, value) pairs must be moved to the successor

0
1

2

3

4

5

6

7
8

9

10

11

12

13

14

15
Node 3 is responsible for

keys 15, 0, 1, 2, 3

Node 8 is responsible for

keys 7, 8

Node 10 was responsible for

keys 9, 10

Node 14 was responsible for

keys 11, 12, 13, 14

44

Node 10 removed
Node 6 is responsible

for keys 4, 5, 6

Node 14 is now responsible

for keys 9, 10 11, 12, 13, 14

February 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Performance

• We’re not thrilled about O(N) lookup

• Simple approach for great performance

– Have all nodes know about each other

– When a peer gets a node, it searches its table of nodes for the

node that owns those values

– Gives us O(1) performance

– Add/remove node operations must inform everyone

– Not a good solution if we have millions of peers (huge tables)

45 February 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Finger tables

• Compromise to avoid huge per-node tables

– Use finger tables to place an upper bound on the table size

• Finger table = partial list of nodes

• At each node, ith entry in finger table identifies node that succeeds it

by at least 2i-1 in the circle

– finger_table[0]: immediate (1st) successor

– finger_table[1]: successor after that (2nd)

– finger_table[2]: 4th successor

– finger_table[3]: 8th successor

– …

• O(log N) nodes need to be contacted to find the node that owns a key

 … not as great as O(1) but way better than O(N)

46 February 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Fault tolerance

• Nodes might die

– (key, value) data would need to be replicated

– Create R replicas, storing each one at R-1 successor nodes in the ring

• It gets a bit complex

– A node needs to know how to find its successor’s successor (or more)

• Easy if it knows all nodes!

– When a node is back up, it needs to check with successors for updates

– Any changes need to be propagated to all replicas

47 February 15, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

The end

48 CS 352 © 2013-2016 Paul Krzyzanowski February 15, 2016

