
Internet Technology
03. Application layer protocols

Paul Krzyzanowski

Rutgers University

Spring 2016

1 February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Today we’ll examine

• DNS: Domain Name System

• HTTP: Hypertext Transfer Protocol

• FTP: File Transfer Protocol

2 February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Domain Name System

3 February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

How are IP addresses assigned?

IP addresses are distributed hierarchically

• Internet Assigned Numbers Authority (IANA) at the top

– IANA is currently run by ICANN

• Internet Corporation for Assigned Names and Numbers

4

RIPE

NCC
AfriNIC LACNIC ARIN APNIC

IANA

Regional Internet Registries (RIR)

Allocate blocks of addresses to ISPs

ISP ISP ISP ISP ISP
RIR Map

ISP ISP

ISP

Your computer (or Internet gateway)

- We will look at NAT later

- Permanent (static) or temporary (dynamic)

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

How are machine names assigned?

• Early ARPANET

– Globally unique names for each machine (e.g., UCBVAX)

– Kept track at the Network Information Center at the Stanford

Research Institute (SRI NIC)

• That doesn’t scale!

• A domain hierarchy was created in 1984 (RFC 920)

– Domains are administrative entities: divide name management

– Tree-structured global name space

– Textual representation of domain names

 www.cs.rutgers.edu

5 February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Domain Name Hierarchy

6

com edu gov info net org ac ae nl zw us

Root

generic TLDs country-code TLDs
rutgers

cs nb www

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Top Level Domains (TLDs)

7

gTLD
Generic top-level domains

e.g., .biz, .com, .edu,

.gov, .info, .net, .org

IDN ccTLD
Internationalized

country-code domains

e.g., .السعودية, .中國 , .рф

ccTLD
Country-code domains

ISO 3166 codes

e.g., .us, .de, .ca, .es

There are currently 1,239 top-level domains

Each top-level domain has an administrator assigned to it

Assignment is delegated to various organizations by the Internet Assigned

Numbers Authority (IANA)

See http://www.iana.org/domains/root/db for the latest count

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Shared registration

• Domain name registry: this is the database

– Keeps track of all domain names registered in a top-level domain

• Domain name registry operator: this is the company that runs the db

– NIC = Network Information Center – organization that keeps track of the

registration of domain names under a top-level domain

– keeps the database of domain names

• Domain name registrar: this is the company you use to register

– Company that lets you register a domain name

8 February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Shared registration

• Until 1999: Network Solutions Inc. operated the .com, .org, .net registries

• Now

– Multiple domain registrars provide domain registration services

– Around 1,000 of these companies – each is accredited by the ICANN

• 2,124 as of February 2016, including 701 unique DropCatch.com registrars

• The registrar you choose becomes the designated registrar for your domain

– Maximum period of registration for a domain name = 10 years

• The registry operator keeps the central registry database for the top-level domain

• Only the designated registrar can change information about domain names

– A domain name owner may invoke a domain transfer process

9 February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Example

• Namecheap is the designated registrar for poopybrain.com

• VeriSign is the registry operator for the .com gTLD

See https://www.icann.org/registrar-reports/accredited-list.html for the latest list of registrars

The problem

Every device connected to the Internet has a unique

Internet Protocol (IP) address

How do you resolve user-friendly machine names to

IP addresses?

10

www.cs.rutgers.edu 128.6.4.24

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Original solution

Through the 1980s

– Search /etc/hosts file for machine name (see RFC 606)

– File periodically downloaded from Network Information Center

(NIC) at the Stanford Research Institute (SRI)

– This was not sustainable with millions of hosts on the Internet

• A lot of data

• A lot of churn in the data

– new hosts added, deleted, addresses changed

• Maintenance

• Traffic volume

Solution doesn’t scale!

11 February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

DNS: Domain Name System

• Distributed database

– Hierarchy of name servers

• DNS is an application-layer protocol

– Name-address resolution is handled at the edge

– The network core is unaware of host names

12 February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

DNS provides

• Name to IP address translation

• Aliasing of names (called canonical names)

• Identification of name servers

• Mail server names

• Load distribution:

– Multiple name servers that can handle a query for a domain

– Caching

– Ability to provide a set of IP addresses for a name

13 February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

DNS is a distributed, hierarchical database

14

Root DNS

Servers

rutgers.edu

DNS Servers

google.com

DNS Servers

columbia.edu

DNS Servers

pk.org DNS

Servers

edu DNS

Servers

com DNS

Servers

org DNS

Servers

A collection of DNS servers

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Authoritative DNS server

• An authoritative name server is responsible for answering

queries about its zone

– Configured by the administrator

• Zone = group of machines under a node in the tree

E.g., rutgers.edu

15 February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

A DNS server returns answers to queries

Key data that a DNS server maintains (partial list)

16

Information Abbreviation Description

Host A Host address (name to address)

Includes name, IP address, time-to-live

(TTL)

Canonical name CNAME Name for an alias

Mail exchanger MX Host that handles email for the domain

Name server NS Identifies the name server for the zone:

tell other servers that yours is the

authority for info within the domain

Start of Zone

Authority

SOA Specifies authoritative server for the

zone. Identifies the zone, time-to-live, and

primary name server for the zone

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Finding your way

• How do you find the DNS Server for rutgers.edu?

– That’s what the domain registry keeps track of

– When you register a domain, you supply the addresses of at least

two DNS servers that can answer queries for your zone

• So how do you find it?

– Start at the root

17 February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Root name servers

• The root name server answers can return a list of

authoritative name servers for top-level domains

• 13 root name servers

– A.ROOT-SERVERS.NET, B.ROOT-SERVERS.NET, …

– Each has redundancy (via anycast routing or load balancing)

18

Download the latest list at http://www.internic.net/domain/named.root

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

DNS Queries

• Iterative (non-recursive) name resolution

– DNS server will return a definitive answer or a referral to another DNS server

• referral = reference to a DNS server for a lower level of the queried namespace

• Server returns intermediate results to the client

1. Send query to a root name server

2. Send query to a edu name server

3. Send query to a rutgers name server

– Advantage: stateless

• Recursive DNS name resolution

– Name server will take on the responsibility of fully resolving the name

• May query multiple other DNS servers on your behalf

– DNS server cannot refer the client to a different server

– Disadvantage: name server has more work; has to keep track of state

– Advantages: Caching opportunities, less work for the client!

19 February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Most top-level DNS servers only support iterative queries

DNS Resolvers: local name server

• DNS Resolver

– Not really a part of the DNS hierarchy

– Acts as an intermediary between programs that need to resolve names and the

name servers

– A resolver is responsible for performing the full resolution of the query

• Where are they?

– Local system has one: that’s what applications contact

• Local cache; may be a process or a library

• On Linux & Windows, these are limited DNS servers (called stub resolvers): they are not

capable of handling referrals and expect to talk with a name server that can handle recursion

(full resolution)

– ISPs (and organizations) run them on behalf of their customers

• Including a bunch of free ones (OpenDNS, Google Public DNS)

• Resolvers cache past lookups – not responsible for zones

20 February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Using a DNS resolver

To look up a name:

– Send a DNS query to the local resolver (recursion requested)

• Local resolver

– If the local resolver has cached results, it can return the answer

– Otherwise, consult a local hosts file (e.g., /etc/hosts) to return locally-

configured name→address mappings

– Otherwise contact a DNS server that the client knows about – this is

typically another resolver that is provided by the ISP

• The local system is configured with one or more addresses of external name

servers

• ISP Resolver

– Check cache

– Check a locally-configured zone file (if any). If the desired data is there,

return an authoritative answer

– Otherwise, do an iterative set of queries to traverse the hierarchy to find

the desired name server and get results

21 February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

DNS Resolvers in action

22

app

app

DNS stub

resolver

cache

/etc/hosts

DNS

resolver

cache

zone info

Local server ISP

Interative

lookup

Local stub resolver:

- check local cache

- check local hosts file

- send request to external resolver

E.g., on Linux: resolver is configured via

the /etc/resolv.conf file

External resolver

- DNS server that accepts recursion

- Running at ISP, Google Public DNS,

OpenDNS, etc.

DNS hierarchy

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Sample query

• Rutgers registered rutgers.edu with the .edu domain

– educause.net is the domain registry for the .edu gTLD

• The root name server contains addresses for the name

servers of all the top-level domains

• The local name server is provided the list of addresses of

root name servers

23 February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Sample Query
Submit query to a local DNS resolver:

1. Send query(cs.rutgers.edu)  root name server

 root name servers identify authoritative servers for top-level domains

 send query to c.root-servers.net: 192.33.4.12

2. Receive referral to a list of DNS servers for edu

 a.edu-servers.net: 192.5.6.30

 g.edu-servers.net: 192.42.93.30

3. Send query(cs.rutgers.edu)  edu name server

 send query to g.edu-servers.net: 192.41.162.32

4. Receive referral to rutgers.edu name servers:

 - ns87.a0.incapsecuredns.net 192.230.121.86

 - ns8.a1.incapsecuredns.net. 192.230.122.7

 - ns124.a2.incapsecuredns.net 192.230.123.123

5. query(cs.rutgers.edu)  rutgers name server

 send query to 192.230.122.7

6. The rutgers name server returns

 A: 128.6.4.2 address

 MX: dragon.rutgers.edu domain name for email

24 February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Caching

• Starting every query at the root would place a huge load

on root name servers

• A name server can be configured to cache results of

previous queries

– Save query results for a time-to-live amount of time

– The time-to-live value is specified in the domain name record by an

authoritative name server

• Caching name servers are recursive name servers

25 February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

The DNS Query Protocol

26 February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

DNS Records

• DNS servers store resource records (RRs)

• Format

– Name, value, type of record, TTL (time to live)

• Common types

– Address: A

• Name: hostname

• Value: IP address

– Name Server: NS

• Name: domain (rutgers.edu)

• Value: hostname of authoritative

name server for the domain

27

– Canonical name: CNAME

• Name: alias hostname

• Value: real hostname

– Mail Exchanger: MX

• Name: hostname

• Value: mail server for hostname

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

DNS Protocol

• DNS is a service that listens to requests on TCP or UDP port 53

• Protocol consists of query and reply messages

– Both messages have the same format and header

28

Questions

(variable # of questions)

Identification Flags

Number of

questions

Number of answer

RRs

Identification
Number of

additional RRs

Answers

(variable # of resource records)

Authority

(variable # of resource records)

Additional Information

(variable # of resource records)

12 bytes Identification
16 bit number for query.

Matching number for reply.

Flags
Query or reply (request/response)

Recursion desired (request)

Recursion available (response)

Reply is authoritative (response)

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

DNS Protocol

• DNS is a service that listens to requests on TCP or UDP port 53

• Protocol consists of query and reply messages

– Both messages have the same format and header

29

Questions

(variable # of questions)

Identification Flags

Number of

questions

Number of answer

RRs

Identification
Number of

additional RRs

Answers

(variable # of resource records)

Authority

(variable # of resource records)

Additional Information

(variable # of resource records)

12 bytes
Name, type fields for a query

Resource records in

responds to query

Records for authoritative

servers

Additional helpful information

(e.g., other DNS servers in

domain)

variable

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

DNS Queries

• Questions field contains a sequence or DNS queries

• Query name

– Encoded form of the name for which we want an address

• Query type

– 1 = IP address, 2 = name server, 0x0f = mail server, …

• Query class

– 1 = Internet addresses, 2 = CSNET

30

QNAME (variable)

QTYPE

(16 bits)

QCLASS

(16 bits)

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Reverse DNS

• What if we have an IP address and want the name?

• Special domain for reverse lookups

– in-addr.arpa

– ARPA = Address & Routing Parameter Area,

not Advanced Research Projects Agency (e.g., ARPANET)

 www.cs.rutgers.edu → 128.6.4.24

 24.4.6.128.in-addr.arpa → www.cs.rutgers.edu

31 February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Setting up reverse DNS

• Different query path than regular DNS queries

• On a DNS server

– Configure PTR (pointer) records that map IP addresses to names

• Let the world find out

– ISP allocated IP addresses to you

– You tell the ISP what DNS servers are responsible for reverse DNS

entries

• Example query path

– DNS resolver contacts root servers

– Root server refers to ARIN (North American IP registry) RDNS server

– ARIN refers to local ISP RDNS server, which refers to your server

32 February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Root server → RIR (e.g., ARIN) DNS server → ISP DNS server

Web and HTTP

33 February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

HTTP Basics

• HTTP: Hypertext Transfer Protocol (RFC 2616)

– Web’s application-layer protocol

– Client-server model

– TCP-based protocol

• Client connects to port 80 on the server

• HTTP messages are exchanged

• Client closes the connection

• HTTP is stateless

– Server does not store state

on previous requests

– Simplifies design

• Easier failure recovery

• Simplifies load balancing

34

HTTP Server

(e.g., Apache)

HTTP Client

(e.g., Safari)

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

URLs

• Requests for objects are URLs

• URL = Uniform Resource Locator

35

http://domain_name:port/path/path/object

http://box.pk.org:8080/secret/demo/mystuff.html

protocol server port # path to object object

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Types of connections

• Non-persistent HTTP (HTTP 1.0)

– At most one object is sent over a TCP connection

– Request/response

• Persistent HTTP (HTTP 1.1)

– Multiple objects can be sent over a single connection

36 February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Non-persistent HTTP

• www.pk.org/index.html is one file that references:

– Five CSS (cascading style sheet) files

– Four image files

37

HTTP client connects to www.pk.org on port 80

HTTP server accepts the connection

HTTP client sends a request message to get the

object index.html

HTTP server forms a response message containing

the requested object and sends it to the client

HTTP server closes the connection HTTP client receives the response & parses it.

Realizes that it needs to get 9 more objects.

Repeat steps 1-5

1a

2

4

1b

3

5

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Non-persistent HTTP: Response time

• Round-trip time (RTT)

– Time for a small packet to travel from the

client to the server & back to the client

• Response time

– One RTT to initiate the connection

– One RTT for request & start of response

– File transmission time

• Total time =

 # objects × (2×RTT + transit_time)

38

Connect

Request file

File received

Time to

transmit

file

RTT

RTT

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Connect

Request file

File received

Time to

transmit

file

RTT

RTT

Persistent HTTP: Response time

• Server leaves connection open after sending

response

– Subsequent HTTP messages are sent over the same

open connection

– One RTT for each referenced object once the

connection is set up

• Response time

– One RTT to initiate the connection

– One RTT for request & start of response per

object

– File transmission time per object

• Total timepersistent =

 RTT + # objects × (RTT + transit_time)

• Versus Total timenon-persistent =

 # objects × (2×RTT + transit_time)

39

Connect

Request file

File received

Time to

transmit

file

RTT

RTT

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

File received

Time to

transmit

file

RTT

HTTP Request Message

• Two classes of messages: request & response

• HTTP request messages are human-readable ASCII text

40

Browser request for a URL (Uniform Resource Locator):

 http://box.pk.org:12345/this/is/a/test.html

Creates an HTTP request

GET /this/is/a/test.html HTTP/1.1

Host: box.pk.org:12345

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_2) AppleWebKit/536.26.17

 (KHTML, like Gecko) Version/6.0.2 Safari/536.26.17

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-us

Accept-Encoding: gzip, deflate

Connection: keep-alive

h
e
a
d
e
rs

Carriage return, line feed (0x0d, 0x0a) indicates end

of header … and end of message in this case

Request line: GET, POST, HEAD, … commands

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

HTTP Response Message

41

HTTP/1.1 200 OK

Date: Mon, 11 Feb 2013 19:31:58 GMT

Server: Apache/2.2.22 (Ubuntu)

Last-Modified: Thu, 31 Jan 2013 01:18:12 GMT

ETag: "3c0549-17df-4d48b667f3d00"

Accept-Ranges: bytes

Content-Length: 6111

Vary: Accept-Encoding

Connection: close

Content-Type: text/html

Data (e.g., web page content)

Status line:

Protocol, status code, status text

h
e

a
d

e
rs

Carriage return, line feed

(0x0d, 0x0a) indicates end

of header

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Uploading form input

• HTTP POST method

– Web pages may include form input

– Input is uploaded to the server in the body of the request

• URL method

– Parameter/value pairs are encoded in the URL (query string)

– HTTP GET request is sent

– Format

• http://server/path/page?query_string

• query_string is of the form item0=value0&item1=value1...

42 February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

HTTP Methods

HTTP/1.0

• GET

– Request a resource

• POST

– Send data in the request

message’s body to the server

• HEAD

– Like GET, but only send the

headers

HTTP/1.1

• GET, POST, HEAD

• PUT

– Uploads file to the path

specified in the URL field

• DELETE

– Deletes the file specified in

the URL field

43 February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Some HTTP response codes

• 200 OK

– Request succeeded; requested object is in the message

• 301 Moved Permanently

– Requested object moved; new location specified in a Location:

header in the list of headers

• 400 Bad Request

– The server could not understand the request

• 404 Not Found

– The requested content is not found on the server

• 505 HTTP Version Not Supported

– Unsupported version

44 February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Try it out yourself

Talk to a server

• Run

– telnet cnn.com 80

• Type in a basic GET request

– GET /index.html HTTP/1.1

– Followed by an blank line

• Look at the response

Listen to a client

• Run demo TCP server

– java TCPServer

• Start a browser and connect to it:

– http://localhost:12345/a/b/c

– The server will print all the data it gets

from the client

45 February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Keeping state: cookies

• HTTP is stateless

• Cookies provide a mechanism for web servers to store state

• Four parts to cookies:

1. Cookie header line in the HTTP response message

2. Cookie header line in subsequent HTTP request messages

3. Cookie file stored on user’s host & managed by browser

4. Back-end database at the web server host

• Example

– You visit an e-commerce site

– When the site receives your request, it creates a unique ID and an entry in

the database identified by that ID.

– The HTTP response tells your browser to set a cookie. The cookie is sent

with future messages to that server

46 February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Cookies in use

47

ebay.com: 9123

client server

Database

amazon.com

creates an ID 2244

for the request

HTTP request

HTTP response
Set-cookie: 2244

ebay.com: 9123

amazon.com: 2244

HTTP request
Cookie: 2244

Cookie-specific

action

ebay.com: 9123

amazon.com: 2244
HTTP request
Cookie: 2244

Cookie-specific

action

Future session

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Maintaining state with cookies

• Cookies can help a server store & access

– Shopping cart info

– Login name, authorization credentials

– Preferences (e.g., town name for weather)

– Session state (e.g., web-based email)

– History of web pages you visited on the site

• First-party cookies

– Placed by the website you visit

• Third-party cookies

– Placed by sites other than the one you visit – mostly ads

48 February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Web caching: proxy servers

• Caching proxy

• User sends all HTTP requests to a proxy server

• Proxy server:

– Checks its cache

– If the response is cached, it returns an HTTP response

– If not, it contacts the server

• Server sends a response

• Proxy caches it

• Proxy forwards the response to the requesting client

• Advantages

– Reduce response time if proxy

is closer/faster

– Reduce traffic on the web server

– Reduce traffic on the organization’s link

49

Web server

Proxy

Caching proxy

acts as both a

client & server

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Caching example

• Assume

– Average object size = 1 Mbit (~ 122KB)

– Average request rate from institution’s

browsers to servers = 15/s

– Delay from institutional router to a server and

back to router = 2 sec

• Consequences

– Utilization on LAN = 1.5%

– Utilization on access link = 100%

– Total delay =

 Internet delay + access delay + LAN delay

50

Servers on the public Internet

15 Mbps

access link

100 Mbps LAN

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Traffic intensity on LAN = (15 requests/sec)

× (1 Mbits/request)/(100 Mbps) = 0.15

Traffic intensity on access link =

(15 requests/sec) × (1 Mbits/request)/(15 Mbps) = 1

2 sec

Traffic intensity ~ 1 = BAD → delay grows without bound (minutes!)

2 sec minutes msec

Caching example: improve access link

• Assume

– Access link is now 100 Mbps

• Consequences

– Utilization on LAN = 1.5%

– Utilization on access link = 15%

– Total delay =

 Internet delay + access delay + LAN

delay

 = 2 sec + msec + msec

– But increasing the access link can be a

costly upgrade

51

Servers on the public Internet

100 Mbps

access link

100 Mbps LAN

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Caching example: add a caching proxy

• Assume

– Access link remains at 15 Mbps

– Install a caching proxy

– Assume hit rate is 0.4 (40% hits)

• Consequences

– 40% of requests satisfied by proxy

(quick – e.g., 10 ms)

– 60% have to go to outside servers

– Use of access link reduced to 60%

– Total average delay =

 Internet delay + access delay + LAN

delay

 = 0.6*(2.01 s)+ 0.4*(10 ms) + puny ms

 = < ~1.4 seconds

52

Servers on the public Internet

15 Mbps

access link

100 Mbps LAN

Caching

proxy

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

HTTP control for caching

Conditional GET

– Request an object BUT don’t send it if the cache has an up-to-date version

53

GET /index.html HTTP/1.1

Host: box.pk.org

HTTP Response

HTTP/1.1 200 OK

Date: Mon, 11 Feb 2013 21:01:16 GMT

Server: Apache/2.2.22 (Ubuntu)

Last-Modified: Thu, 31 Jan 2013 01:18:12 GMT

ETag: "3c0549-17df-4d48b667f3d00"

Accept-Ranges: bytes

Content-Length: 6111

Vary: Accept-Encoding

Content-Type: text/html

Content…

HTTP Request

Timestamp of file modification on server

Unique string for that version of

the file; typically a hash of the file

To cache, store the file, Last-Modified timestamp, and ETag.

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

HTTP control for caching

Next time you request the file, include two headers in your request

If-Modified-Since: time from Last-Modified

If-None-Match: value from Etag

54

GET /index.html HTTP/1.1

Host: box.pk.org

If-Modified-Since: Thu, 31 Jan 2013 01:18:12 GMT

If-None-Match: "3c0549-17df-4d48b667f3d00"

HTTP Request

HTTP Response

HTTP/1.1 304 Not Modified

Date: Mon, 11 Feb 2013 21:11:32 GMT

Server: Apache/2.2.22 (Ubuntu)

ETag: "3c0549-17df-4d48b667f3d00"

Vary: Accept-Encoding

This means the file was not

modified since the cached copy.

– alternatively –

If the content has been

modified at the server, then

the content is sent as with a

normal GET request.

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Conditional GET

• Request a file from a server because it’s not in your cache

– Receive the file

– Headers contain: Last-Modified and Etag

– For caching, store both of those along with the file

• Next time you request the file, include two headers in your request

– If-Modified-Since: <time from Last-Modified>

– If-None-Match: <value from Etag>

• If the file has changed since you last requested it, the server will send

back the new file. If not, the server will respond with a “304 Not

Modified” code

55 February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

More Optimizations

• Problem: Head-of-line blocking

– One large (or slow) HTTP request can hold up all other requests from that client

• HTTP/1.x: Parallel connections

– Open multiple TCP connections to the server

– But:

• Hard to deploy with proxies

• Each connection takes time to open

• Can use up a lot of connections – extra server memory

– Parallel connections typically limited to a small number (e.g., 4)

• Can still lead to head-of-line blocking per connection

• HTTP/1.x: Pipelining

– Send multiple HTTP requests without waiting for a response from each one

– But:

• The server still must send responses in the order requests were sent

• Requests may be received quicker by the server but responses are still at risk of head-of-line

blocking

• Not supported or turned on in most browsers and proxies

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski 56

More Optimizations

• HTTP/2 – Multiplexing

– Multiple request & response messages can be in flight at the same time

– Messages can be intermingled on one connection

• “Minification”

– Reduce unnecessary characters form JavaScript & CSS

– Merge multiple script files into one compressed file

• HTTP/2 – header compression

– Each HTTP header uses ~1400 bytes – takes 7-8 round trips to move them to the

client

• HTTP/2 – server push

– Server can push content – give the client more than what it requested

– Why send more data?

• The browser has to get the first response, parse it, and make requests

• But … the server knows what a browser will need to render a web page

– It can send the data before it’s requested by the client

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski 57

FTP: File Transfer Protocol

58 February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

FTP: File Transport Protocol

• Transfer files between computers

• Client/server model

• Client: accepts commands from the user and initiates requests to get

or put files on the server

• Defined in RFC 959

– Original version RFC 765 – June 1980

– First proposal dates back to 1971

59

FTP

client

FTP

server

files

Send/receive files

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Separate data & control connections

• Client connects to an FTP server

on TCP port 21

– This is the command channel

– Client port = some port ≥ 1024 = N

• Commands are user requests and

include authentication info

• When the server receives a

command to transfer data, it

initiates a TCP connection to the

client on port N+1 from its local

data port (20)

• After transferring one file, the

server closes the data connection

Separation between control &

data channels

– Out of band control connection

60

FTP

client

FTP

server

files

commands
Port N Port 21

data

Port N+1 Port 20

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

connect

connect

Sample FTP Commands

• Sent as ASCII text over the

control channel

• Access commands

– USER: identify yourself

– PASS: supply your password

– CWD (CD): change working directory

– CDUP (CD ..): change to parent

– QUIT: log out

• Control commands

– RETR (GET): retrieve a file

– STORE (PUT): store a file

– APPEND: append to a file

– DELETE: delete a file

– LIST (DIR): list files

• Error messages

– Similar to HTTP:

• Status code & text

– 331 User name okay, need password.

– 200 Command okay.

– 230 User logged in, proceed.

– 502 Command not implemented.

– 125 Data connection already open;

transfer starting.

61 February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Active vs. Passive FTP

• Not all clients can receive incoming connections

– This was a pain with firewalls and NAT (network address translation)

• Passive mode FTP

– Client initiates both connections to the server

– The first connection (for commands) contacts the server on port 21

• Originating port = N, N ≥ 1024

– Then the client then issues a PASV command

• The server opens a random port P ≥ 1024

• Sends back the value P to the client as a response

• The client then connects from port N+1 to port P

• Most browsers support only passive mode FTP

62 February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

The end

63 February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

