Internet Technology
03. Application layer protocols

Paul Krzyzanowski
Rutgers University

Spring 2016

_

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

-
Today we'll examine

 DNS: Domain Name System
« HTTP: Hypertext Transfer Protocol

 FTP: File Transfer Protocol

.

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

_

Domain Name System

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

[

How are IP addresses assigned?

IP addresses are distributed hierarchically

* Internet Assigned Numbers Authority (IANA) at the top

— IANA is currently run by ICANN
 Internet Corporation for Assigned Names and Numbers

Regional Internet Registries (RIR) AfriNIC LACNIC

| | l | |

Allocate blocks of addresses to ISPs

-

RIR Map ~ S

e 8 I

Your computer (or Internet gateway)
- We will look at NAT later
- Permanent (static) or temporary (dynamic)

_

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski 4

-
How are machine names assigned?

« Early ARPANET
— Globally unigue names for each machine (e.g., UCBVAX)

— Kept track at the Network Information Center at the Stanford
Research Institute (SRI NIC)

 That doesn’t scale!

« A domain hierarchy was created in 1984 (RFC 920)
— Domains are administrative entities: divide name management
— Tree-structured global name space

— Textual representation of domain names
WWW.Cs.rutgers.edu

.

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

(

Domain Name Hierarchy

Root

_

generic TLDs

country-code TLDs

February 12, 2016

CS 352 © 2013-2016 Paul Krzyzanowski

.

-
Top Level Domains (TLDs)

-~

ccTLD
Country-code domains
ISO 3166 codes

e.g., .us, .de, .ca, .es

N

AN

IDN ccTLD
Internationalized
country-code domains

e.g., Al dE | po

N

There are currently 1,239 top-level domains

Each top-level domain has an administrator assigned to it

AN

gTLD
Generic top-level domains

e.g., .biz, .com, .edu,
.gov, .info, .net, .org

~

J

Assignment is delegated to various organizations by the Internet Assigned
Numbers Authority (IANA)

See http://www.iana.org/domains/root/db for the latest count

J

February 12, 2016

CS 352 © 2013-2016 Paul Krzyzanowski

-
Shared registration

« Domain name registry: this is the database
— Keeps track of all domain names registered in a top-level domain

« Domain name registry operator: this is the company that runs the db

— NIC = Network Information Center — organization that keeps track of the
registration of domain names under a top-level domain

— keeps the database of domain names

« Domain name registrar: this is the company you use to register
— Company that lets you register a domain name

_

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski 8

4)
Shared registration

« Until 1999: Network Solutions Inc. operated the .com, .org, .net registries

* Now
— Multiple domain registrars provide domain registration services
— Around 1,000 of these companies — each is accredited by the ICANN
» 2,124 as of February 2016, including 701 unique DropCatch.com registrars
« The registrar you choose becomes the designated registrar for your domain
— Maximum period of registration for a domain name = 10 years

« The registry operator keeps the central registry database for the top-level domain

« Only the designated registrar can change information about domain names
— A domain name owner may invoke a domain transfer process

Example
 Namecheap is the designated registrar for poopybrain.com
 VeriSign is the registry operator for the .com gTLD

See https://www.icann.org/registrar-reports/accredited-list.html for the latest list of registrars

.

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski 9

[The problem

Every device connected to the Internet has a unique
Internet Protocol (IP) address

How do you resolve user-friendly machine names to
|IP addresses?

www.cs.rutgers.edu ——— 128.6.4.24

.

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

/

Original solution

.

Through the 1980s

— Search /etc/hosts file for machine name (see RFC 606)

— File periodically downloaded from Network Information Center
(NIC) at the Stanford Research Institute (SRI)

— This was not sustainable with millions of hosts on the Internet
A lot of data

A lot of churn in the data
— new hosts added, deleted, addresses changed

Maintenance
Traffic volume

Solution doesn’t scale!

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

11

(DNS: Domain Name System

 Distributed database
— Hierarchy of name servers

 DNS is an application-layer protocol
— Name-address resolution is handled at the edge
— The network core is unaware of host names

_

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

12

DNS provides

« Name to IP address translation

Aliasing of names (called canonical names)
« ldentification of name servers
« Mail server names

 Load distribution:
— Multiple name servers that can handle a query for a domain
— Caching
— Ability to provide a set of IP addresses for a name

.

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

-

DNS is a distributed, hierarchical database

_

com DNS
SEWES

google.com
DNS Servers

Root DNS
Servers

edu DNS
Servers Servers

rutgers.edu columbia.edu
DNS Servers DNS Servers

A collection of DNS servers

pk.org DNS
Servers

February 12, 2016

CS 352 © 2013-2016 Paul Krzyzanowski

14

(

Authoritative DNS server

.

« An authoritative name server is responsible for answering

gueries about its zone
— Configured by the administrator

« Zone = group of machines under a node In the tree
E.g., rutgers.edu

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

15

-
A DNS server returns answers to queries

Key data that a DNS server maintains (partial list)

Information Abbreviation Description

Host A Host address (name to address)
Includes name, IP address, time-to-live
(TTL)

Canonical name CNAME Name for an alias

Mail exchanger MX Host that handles email for the domain

Name server NS |ldentifies the name server for the zone:

tell other servers that yours is the
authority for info within the domain

Start of Zone SOA Specifies authoritative server for the
Authority zone. ldentifies the zone, time-to-live, and
primary name server for the zone

_

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski 16

[

Finding your way

« How do you find the DNS Server for rutgers.edu?

— That’s what the domain registry keeps track of

— When you register a domain, you supply the addresses of at least
two DNS servers that can answer queries for your zone

* So how do you find it?
— Start at the root

.

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

17

4)
Root name servers

 The root name server answers can return a list of
authoritative name servers for top-level domains

13 root name servers
— A.ROOT-SERVERS.NET, B.ROOT-SERVERS.NET, ...
— Each has redundancy (via anycast routing or load balancing)

° o
° o
@ - - @ e
3 Lo g * . e ¢
e
fi eg‘—-‘ g € &
o -\\\‘ o .
{‘,,-/ e ¥ N\ \\‘ o e » ®
[G) :
e
(=)
. L.
o
o
4 e 8
e Anycast instances e ~

©
based on roat-servers,org . ‘ @@ . @

20061229

Download the latest list at http://www.internic.net/domain/named.root Y,

.

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski 18

-
DNS Queries

* Iterative (non-recursive) name resolution

— DNS server will return a definitive answer or a referral to another DNS server
 referral = reference to a DNS server for a lower level of the queried namespace
« Server returns intermediate results to the client
1. Send query to a root name server
2. Send query to a edu name server
3. Send query to a rutgers name server

— Advantage: stateless

 Recursive DNS name resolution

— Name server will take on the responsibility of fully resolving the name
« May query multiple other DNS servers on your behalf

— DNS server cannot refer the client to a different server
— Disadvantage: name server has more work; has to keep track of state
— Advantages: Caching opportunities, less work for the client!

S Most top-level DNS servers only support iterative queries

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski 19

-
DNS Resolvers: local name server

 DNS Resolver
— Not really a part of the DNS hierarchy
— Acts as an intermediary between programs that need to resolve names and the
name servers
— Aresolver is responsible for performing the full resolution of the query

* Where are they?

— Local system has one: that's what applications contact

* Local cache; may be a process or a library

* On Linux & Windows, these are limited DNS servers (called stub resolvers): they are not
capable of handling referrals and expect to talk with a name server that can handle recursion

(full resolution)

— ISPs (and organizations) run them on behalf of their customers
* Including a bunch of free ones (OpenDNS, Google Public DNS)

» Resolvers cache past lookups — not responsible for zones

.

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

20

-
Using a DNS resolver

To look up a name:
— Send a DNS query to the local resolver (recursion requested)

 Local resolver
— If the local resolver has cached results, it can return the answer

— Otherwise, consult a local hosts file (e.g., /etc/hosts) to return locally-
configured name—address mappings

— Otherwise contact a DNS server that the client knows about — this is
typically another resolver that is provided by the ISP
« The local system is configured with one or more addresses of external name

servers
* |SP Resolver
— Check cache

— Check a locally-configured zone file (if any). If the desired data is there,
return an authoritative answer

— Otherwise, do an iterative set of queries to traverse the hierarchy to find
the desired name server and get results

.

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski 21

[

DNS Resolvers in action

Local server

@ N

DNS stub

resolver

/etc/hosts

Local stub resolver:

- check local cache

- check local hosts file

- send request to external resolver

E.g., on Linux: resolver is configured via
the /etc/resolv.conf file

_

N

resolver

zone info

/\ Interative

/

External resolver
DNS server that accepts recursion
Running at ISP, Google Public DNS,

OpenDNS, etc.

\’ lookup

DNS hierarchy

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

22

p

Sample query

.

« Rutgers registered rutgers.edu with the .edu domain
— educause.net is the domain registry for the .edu gTLD

 The root name server contains addresses for the name
servers of all the top-level domains

* The local name server is provided the list of addresses of
root name servers

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski 23

Sample Query

Submit query to a local DNS resolver:

1.

6.

Send query(cs.rutgers.edu) — root name server

root name servers identify authoritative servers for top-level domains

send query to c.root-servers.net: 192.33.4.12

Receive referral to a list of DNS servers for edu
a.edu-servers.net: 192.5.6.30
g.edu-servers.net: 192.42.93.30

Send query(cs.rutgers.edu) — edu name server
send query to g.edu-servers.net: 192.41.162.32

Receive referral to rutgers.edu name servers:

- ns87.a0.incapsecuredns.net 192.230.121.86
- ns8.al.incapsecuredns.net. 192.230.122.7
- nsl24.a2.incapsecuredns.net 192.230.123.123

guery(cs.rutgers.edu) — rutgers name server
send query to 192.230.122.7

The rutgers name server returns
A: 128.6.4.2 address
MX: dragon.rutgers.edu domain name for email

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

24

[
@

Caching

.

« Starting every query at the root would place a huge load
on root name servers

« A name server can be configured to cache results of
previous queries
— Save query results for a time-to-live amount of time

— The time-to-live value is specified in the domain name record by an

authoritative name server

« Caching name servers are recursive name servers

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

25

_

The DNS Query Protocol

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

26

-
DNS Records

* DNS servers store resource records (RRS)

* Format
— Name, value, type of record, TTL (time to live)

« Common types

— Address: A — Canonical name: CNAME
 Name: hostname Name: alias hosthame
» Value: IP address » Value: real hostname
— Name Server: NS — Mail Exchanger: MX
« Name: domain (rutgers.edu) « Name: hostname
» Value: hostname of authoritative » Value: mail server for hostname

name server for the domain

.

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski 27

(DNS Protocol

Identification

_

16 bit number for query.
Matching number for reply.

Reply is authoritative (response)

» Protocol consists of query and reply messages
— Both messages have the same format and header

Identification Flags

Number of Number of answer
guestions RRs

Number of

Identification additional RRS

Questions
Fl ags (variable # of questions)
Query or reply (request/response) _ Answers
Recursion desired (request) (variable # of resource records)
Recursion available (response) Authority

(variable # of resource records)

Additional Information
(variable # of resource records)

 DNS is a service that listens to requests on TCP or UDP port 53

- 12 bytes

February 12, 2016

CS 352 © 2013-2016 Paul Krzyzanowski

28

p
DNS Protocol

» Protocol consists of query and reply messages
— Both messages have the same format and header

 DNS is a service that listens to requests on TCP or UDP port 53

Identification Flags
Number of Number of answer
(. A questions RRs 12 bytes
Name, type fields for a query
b 4 Identification Number of
additional RRs
(. N .
Resource records in ~ Questions
responds to query J (variable # of questions)
Answers .
s — a (variable # of resource records) variable
Records for authoritative : -
servers Authority
\ / (variable # of resource records)
(" Additional helpful information) ‘Al;jldl;[;or}al LT d
(e.g., other DNSS servers in (variable # of resource records)
L domain))
_
February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski 29

-
DNS Queries

« Questions field contains a sequence or DNS gqueries

* Query name
— Encoded form of the name for which we want an address

* Query type

— 1 = |P address, 2 = name server, 0xOf = mail server, ...

* Query class
— 1 = Internet addresses, 2 = CSNET

QNAME (variable)

QTYPE QCLASS

(16 bits) (16 bits)

_

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

30

Reverse DNS

(
®

.

« What if we have an IP address and want the name?

« Special domain for reverse lookups
— In-addr.arpa

— ARPA = Address & Routing Parameter Area,
not Advanced Research Projects Agency (e.g., ARPANET)

www.cs.rutgers.edu — 128.6.4.24

24.4.6.128.in-addr.arpa — www.cs.rutgers.edu

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

31

-
Setting up reverse DNS

« Different query path than regular DNS queries

* On a DNS server
— Configure PTR (pointer) records that map IP addresses to names

 Let the world find out
— ISP allocated IP addresses to you

— You tell the ISP what DNS servers are responsible for reverse DNS
entries

« Example query path
— DNS resolver contacts root servers
— Root server refers to ARIN (North American IP registry) RDNS server
— ARIN refers to local ISP RDNS server, which refers to your server

Root server — RIR (e.g., ARIN) DNS server — ISP DNS server

.

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski 32

_

Web and HTTP

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

33

[HTTP Basics

« HTTP: Hypertext Transfer Protocol (RFC 2616)

— Web’s application-layer protocol
— Client-server model
— TCP-based protocol
» Client connects to port 80 on the server

« HTTP messages are exchanged
» Client closes the connection

« HTTP Is stateless

— Server does not store state
on previous requests o
— Simplifies design
« Easier failure recovery HTTP Client
. Simplifies load balancing (e.g., Safari)

HTTP Server
(e.g., Apache)

.
34

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

-
URLS

* Requests for objects are URLs
« URL = Uniform Resource Locator
http://domain name:port/path/path/object

(J (] |) \) |\ J
| | | |

protocol server port # path to object object

http://box.pk.org:8080/secret/demo/mystuff.html

.

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

35

(

.

Types of connections

* Non-persistent HTTP (HTTP 1.0)
— At most one object is sent over a TCP connection

— Request/response

* Persistent HTTP (HTTP 1.1)
— Multiple objects can be sent over a single connection

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

36

-
Non-persistent HTTP

« www.pk.org/index.html is one file that references:
— Five CSS (cascading style sheet) files
— Four image files

[HTTP client connects to www.pk.org on port 80]\
[HTTP server accepts the connection 1

HTTP client sends a request message to get the
object index.html

(I

HTTP server forms a response message containing
the requested object and sends it to the client
N J
e ™ : N
HTTP client receives the response & parses it. HTTP server closes the connection
L Realizes that it needs to get 9 more objects.) L)

()
Repeat steps 1-5

(. /

.

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski 37

4)
Non-persistent HTTP: Response time

* Round-trip time (RTT)
— Time for a small packet to travel from the !
client to the server & back to the client

Connect

RTT -

* Response time
— One RTT to initiate the connection

— One RTT for request & start of response Request filer—____

RTT - Time to

— File transmission time

‘,\ - transmit
, ~ < oo’ file
* Total time = | |
objects x (2xRTT + transit_time) e ——
RTT - /
Request file ’\
RTT S Time to
transmit
= file
File received
_ J

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski 38

Persistent HTTP: Response time

« Server leaves connection open after sending
response !
— Subsequent HTTP messages are sent over the same
open connection Connect

— One RTT for each referenced object once the RTT -
connection is set up

Response time Requestille —>

RTT S Time to
— One RTT to initiate the connection 6\90‘ |]'E_rlansmit
N ile
— One RTT for request & start of response per | | 2
object File recelved{\
RTT

— File transmission time per object W fime 1o
. file
Total time g gistent =

RTT + # objects x (RTT + transit_time) File received

Versus Total time;, persistent =
objects x (2xRTT + transit_time)

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski 39

-
HTTP Request Message

« Two classes of messages: request & response

« HTTP request messages are human-readable ASCII text

Browser request for a URL (Uniform Resource Locator):

http://box.pk.org:12345/this/is/a/test.html

Creates an HTTP reaue Request line: GET, POST, HEAD, ... commands

GET /this/is/altest.htm|l HTTP/1.1

Host: box.pk.org:12345

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_2) AppleWebKit/536.26.17
(KHTML, like Gecko) Version/6.0.2 Safari/536.26.17

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;g=0.8

Accept-Language: en-us

Accept-Encoding: gzip, deflate

Connection: keep-alive

headers
|

Carriage return, line feed (0x0d, Ox0a) indicates end
of header ... and end of message in this case

. J

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski 40

-
HT TP Response Message

Status line:

Protocol, status code, status text
—> HTTP/1.1 200 OK

— Date: Mon, 11 Feb 2013 19:31:58 GMT
Server: Apache/2.2.22 (Ubuntu)
Last-Modified: Thu, 31 Jan 2013 01:18:12 GMT
ETag: "3c0549-17df-4d48b667£3d00"

4 Accept-Ranges: bytes

Content-Length: 6111

Vary: Accept-Encoding

Connection: close

Content-Type: text/html

headers

Carriage return, line feed

.. —_>
(0x0d, 0x0a) indicates end Data (e.g., web page content)
of header

_

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski 41

/ Uploading form input

« HTTP POST method

— Web pages may include form input
— Input is uploaded to the server in the body of the request

 URL method
— Parameter/value pairs are encoded in the URL (query string)

— HTTP GET request is sent

— Format
* http://server/path/page?query string
« query_string is of the form item,=value,&item,=value,. ..

.

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

42

[
®

HTTP Methods

.

HTTP/1.0
« GET

— Request a resource

« POST

— Send data in the request
message’s body to the server

« HEAD

— Like GET, but only send the
headers

HTTP/1.1
 GET, POST, HEAD

. PUT

— Uploades file to the path
specified in the URL field

* DELETE

— Deletes the file specified in
the URL field

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

43

Some HTTP response codes

« 200 OK
— Request succeeded; requested object is in the message

301 Moved Permanently

— Requested object moved; new location specified in a Location:

header in the list of headers

400 Bad Request
— The server could not understand the request

404 Not Found
— The requested content is not found on the server

505 HTTP Version Not Supported
— Unsupported version

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

44

(

Try it out yourself

.

Talk to a server Listen to a client

* Run Run demo TCP server
— telnet cnn.com 80 — Java TCPServer

* Type in a basic GET request « Start a browser and connect to it:
— GET /index.html HTTP/1.1 — http://localhost:12345/a/b/c
— Followed by an blank line — The server will print all the data it gets

from the client
« Look at the response

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

45

Keeping state: cookies

.

e HTTP is stateless

» Cookies provide a mechanism for web servers to store state

» Four parts to cookies:
1. Cookie header line in the HTTP response message
2. Cookie header line in subsequent HTTP request messages
3. Cookie file stored on user’s host & managed by browser
4. Back-end database at the web server host

« Example
— You visit an e-commerce site

— When the site receives your request, it creates a unique ID and an entry in

the database identified by that ID.

— The HTTP response tells your browser to set a cookie. The cookie is sent
with future messages to that server

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

46

-
Cookies In use

client

ebay.com: 9123

ebay.com: 9123
amazon.com: 2244

Cookie:

Future session

HTTP request

HTTP request

server

amazon.com
creates an ID 2244
for the request

HTTP response
Set—-cookie: 2244

Cookie-specific

2244 action

ebay.com: 9123

amazon.com: 2244

Cookie:

HTTP request

Cookie-specific

2244 action

Database

.

February 12, 2016

CS 352 © 2013-2016 Paul Krzyzanowski

-
Maintaining state with cookies

« Cookies can help a server store & access
— Shopping cart info
— Login name, authorization credentials
— Preferences (e.g., town name for weather)
— Session state (e.g., web-based email)
— History of web pages you visited on the site

 First-party cookies
— Placed by the website you visit

» Third-party cookies
— Placed by sites other than the one you visit — mostly ads

.

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

48

-
Web caching: proxy servers

» Caching proxy
» User sends all HTTP requests to a proxy server

* Proxy server:
— Checks its cache
— If the response is cached, it returns an HTTP response

— If not, it contacts the server
« Server sends a response
* Proxy caches it
* Proxy forwards the response to the requesting client

Caching proxy
acts as both a
client & server

Web server

« Advantages

— Reduce response time if proxy
IS closer/faster

— Reduce traffic on the web server
— Reduce traffic on the organization’s link

.

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski 49

[Caching example

 Assume
— Average object size = 1 Mbit (~ 122KB)

— Average request rate from institution’s
browsers to servers = 15/s

— Delay from institutional router to a server and
back to router = 2 sec

« Consequences
— Utilization on LAN = 1.5%
— Utilization on access link = 100%

— Total delay =
Internet delay + access delay + LAN delay

2 sec minutes msec

@ervers on the public Internet\

15 Mbps
access link

-~

(=
_ 100 Mbps LAN
I
eESs88

(15 requests/sec) x (1 Mbits/request)/(15 Mbps) = 1

[Traffic intensity on access link =] [

Traffic intensity on LAN = (15 requests/sec) w
x (1 Mbits/request)/(100 Mbps) = 0.15 J

~

/

Traffic intensity ~ 1 = BAD — delay grows without bound (minutes!)

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

50

(

Caching example: improve access link

.

 Assume
— Access link is now 100 Mbps

« Consequences
— Utilization on LAN = 1.5%
— Utilization on access link = 15%
— Total delay =

Internet delay + access delay + LAN
delay
= 2 sec + msec + msec

— But increasing the access link can be a

costly upgrade

@ervers on the public Interneh

100 Mbps
access link

/

|
=

o

=

100 Mbps LAN

iy

~

/

February 12, 2016

CS 352 © 2013-2016 Paul Krzyzanowski

51

/ Caching example: add a caching proxy

« Assume /Servers on the public Internet \
— Access link remains at 15 Mbps E—
— Install a caching proxy
— Assume hit rate is 0.4 (40% hits) @
« Consequences N /
— 40% of requests satisfied by proxy
(quick — e.g., 10 ms) ;gc“ggsﬁnk
— 60% have to go to outside servers

— Use of access link reduced to 60% /

— Total average delay = |
Internet delay + access delay + LAN .

- = proxy
delay | 100 Mbps LAN

\

Caching

= 0.6*(2.01 s)+ 0.4*(10 ms) + puny ms
= < ~1.4 seconds

U
n
‘m
)]

.

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

52

-
HTTP control for caching

Conditional GET

HTTP Request

GET /index.html HTTP/1.1
Host: box.pk.org

HTTP/1.1 200 OK
Date: Mon, 11 Feb 2013 21:01:16 GMT /
Server: Apache/2.2.22 (Ubuntu)

Last-Modified: Thu, 31 Jan 2013 01:18:12 GMT

ETag: "3c0549-17df-4d48b667f3d00"

Accept-Ranges: bytes \

— Request an object BUT don'’t send it if the cache has an up-to-date version

HTTP Response Timestamp of file modification on server

Content-Length: 6111 Unique string for that version of
Vary: Accept-Encoding the file; typically a hash of the file
Content-Type: text/html
[To cache, store the file, Last-Modified timestamp, and ETag. 1
Content...
\§ J

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

53

HTTP control for caching

.

Next time you request the file, include two headers in your request
If-Modified-Since: time from Last-Modified
If-None-Match: value from Etag

HTTP Request

GET /index.html HTTP/1.1

Host: box.pk.org

If-Modified-Since: Thu, 31 Jan 2013 01:18:12 GMT
If-None-Match: "3¢c0549-17df-4d48b667f3d00"

HTTP Response This means the file was not

HTTP/1.1 304 Not Modified / modified since the cached copy.

Date: Mon, 11 Feb 2013 21:11:32 GMT
Server: Apache/2.2.22 (Ubuntu)

ETag: "3c0549-17df-4d48b667f3d00"
Vary: Accept-Encoding

— alternatively —

If the content has been
modified at the server, then
the content is sent as with a
normal GET request.

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski 54

.

[
@

Conditional GET

» Request a file from a server because it's not in your cache
— Receive the file
— Headers contain: Last-Modified and Etag

— For caching, store both of those along with the file

* Next time you request the file, include two headers in your request
— If-Modified-Since: <time from Last-Modified>
— If-None-Match: <value from Etag>

« If the file has changed since you last requested it, the server will send
back the new file. If not, the server will respond with a “304 Not
Modified” code

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski 55

[

More Optimizations

.

* Problem: Head-of-line blocking
— One large (or slow) HTTP request can hold up all other requests from that client

« HTTP/1.x: Parallel connections
— Open multiple TCP connections to the server

— But:
« Hard to deploy with proxies
« Each connection takes time to open
« Can use up a lot of connections — extra server memory

— Parallel connections typically limited to a small number (e.g., 4)
» Can still lead to head-of-line blocking per connection

« HTTP/1.x: Pipelining

— Send multiple HTTP requests without waiting for a response from each one

— But:
» The server still must send responses in the order requests were sent

* Requests may be received quicker by the server but responses are still at risk of head-of-line
blocking

* Not supported or turned on in most browsers and proxies

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski 56

More Optimizations

.

HTTP/2 — Multiplexing
— Multiple request & response messages can be in flight at the same time
— Messages can be intermingled on one connection

“Minification”
— Reduce unnecessary characters form JavaScript & CSS

— Merge multiple script files into one compressed file

HTTP/2 — header compression

— Each HTTP header uses ~1400 bytes — takes 7-8 round trips to move them to the
client

HTTP/2 — server push
— Server can push content — give the client more than what it requested

— Why send more data?
« The browser has to get the first response, parse it, and make requests

« But ... the server knows what a browser will need to render a web page
— It can send the data before it's requested by the client

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

57

_

FTP: File Transfer Protocol

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

58

FTP: File Transport Protocol

» Transfer files between computers

* Client/server model

» Client: accepts commands from the user and initiates requests to get
or put files on the server

* Defined in RFC 959
— Original version RFC 765 — June 1980
— First proposal dates back to 1971

. FTp | Sendlreceivefiles | prp

L client server

.

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Separate data & control connections

* Client connects to an FTP server

on TCP port 21 . o
— This is the command channel A TN
commands
— Client port = some port = 1024 = N Port N Port 21
cFi-(raIr: data SZ‘I;/F;I'
« Commands are user requests and [Port N+t Port 20
include authentication info ~_
connect
« When the server receives a
command to transfer data, it
initiates a TCP connection to the
) . 4 . N\
client on port N+1 from its local Separation between control &
data port (20) data channels
- After transferring one file, the — Out of band control connection
server closes the data connection _ W

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

60

[

Sample FTP Commands

.

 Sent as ASCII text over the
control channel

» Access commands
— USER: identify yourself
— PASS: supply your password
— CWD (CD): change working directory
— CDUP (CD ..): change to parent
— QUIT: log out

« Control commands
— RETR (GET): retrieve a file
— STORE (PUT): store afile
— APPEND: append to a file
— DELETE: delete a file
— LIST (DIR): list files

Error messages
— Similar to HTTP:
« Status code & text
— 331 User name okay, need password.
— 200 Command okay.
— 230 User logged in, proceed.
— 502 Command not implemented.

— 125 Data connection already open;
transfer starting.

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski 61

/

Active vs. Passive FTP

.

* Not all clients can receive incoming connections
— This was a pain with firewalls and NAT (network address translation)

 Passive mode FTP
— Client initiates both connections to the server

— The first connection (for commands) contacts the server on port 21
« Originating port = N, N 21024
— Then the client then issues a PASV command
* The server opens a random port P = 1024
« Sends back the value P to the client as a response
* The client then connects from port N+1 to port P

» Most browsers support only passive mode FTP

February 12, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

62

_

The end

February 12, 2016

CS 352 © 2013-2016 Paul Krzyzanowski

63

